1
|
Bhar A, Chakraborty A, Roy A. Plant Responses to Biotic Stress: Old Memories Matter. PLANTS (BASEL, SWITZERLAND) 2021; 11:84. [PMID: 35009087 PMCID: PMC8747260 DOI: 10.3390/plants11010084] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 05/20/2023]
Abstract
Plants are fascinating organisms present in most ecosystems and a model system for studying different facets of ecological interactions on Earth. In the environment, plants constantly encounter a multitude of abiotic and biotic stresses. The zero-avoidance phenomena make them more resilient to such environmental odds. Plants combat biotic stress or pathogenic ingression through a complex orchestration of intracellular signalling cascades. The plant-microbe interaction primarily relies on acquired immune response due to the absence of any specialised immunogenic cells for adaptive immune response. The generation of immune memory is mainly carried out by T cells as part of the humoral immune response in animals. Recently, prodigious advancements in our understanding of epigenetic regulations in plants invoke the "plant memory" theory afresh. Current innovations in cutting-edge genomic tools have revealed stress-associated genomic alterations and strengthened the idea of transgenerational memory in plants. In plants, stress signalling events are transferred as genomic imprints in successive generations, even without any stress. Such immunogenic priming of plants against biotic stresses is crucial for their eco-evolutionary success. However, there is limited literature capturing the current knowledge of the transgenerational memory of plants boosting biotic stress responses. In this context, the present review focuses on the general concept of memory in plants, recent advancements in this field and comprehensive implications in biotic stress tolerance with future perspectives.
Collapse
Affiliation(s)
- Anirban Bhar
- Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, West Bengal, India
| | - Amrita Chakraborty
- EVA4.0-Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16500 Prague, Czech Republic
| | - Amit Roy
- EVA4.0-Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16500 Prague, Czech Republic
| |
Collapse
|
2
|
Đurić MJ, Subotić AR, Prokić LT, Trifunović-Momčilov MM, Cingel AD, Dragićević MB, Simonović AD, Milošević SM. Molecular Characterization and Expression of Four Aquaporin Genes in Impatiens walleriana During Drought Stress and Recovery. PLANTS (BASEL, SWITZERLAND) 2021; 10:154. [PMID: 33466920 PMCID: PMC7829780 DOI: 10.3390/plants10010154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
Aquaporins comprise a large group of transmembrane proteins responsible for water transport, which is crucial for plant survival under stress conditions. Despite the vital role of aquaporins, nothing is known about this protein family in Impatiens walleriana, a commercially important horticultural plant, which is sensitive to drought stress. In the present study, attention is given to the molecular characterization of aquaporins in I. walleriana and their expression during drought stress and recovery. We identified four I. walleriana aquaporins: IwPIP1;4, IwPIP2;2, IwPIP2;7 and IwTIP4;1. All of them had conserved NPA motifs (Asparagine-Proline-Alanine), transmembrane helices (TMh), pore characteristics, stereochemical properties and tetrameric structure of holoprotein. Drought stress and recovery treatment affected the aquaporins expression in I. walleriana leaves, which was up- or downregulated depending on stress intensity. Expression of IwPIP2;7 was the most affected of all analyzed I. walleriana aquaporins. At 15% and 5% soil moisture and recovery from 15% and 5% soil moisture, IwPIP2;7 expression significantly decreased and increased, respectively. Aquaporins IwPIP1;4 and IwTIP4;1 had lower expression in comparison to IwPIP2;7, with moderate expression changes in response to drought and recovery, while IwPIP2;2 expression was of significance only in recovered plants. Insight into the molecular structure of I. walleriana aquaporins expanded knowledge about plant aquaporins, while its expression during drought and recovery contributed to I. walleriana drought tolerance mechanisms and re-acclimation.
Collapse
Affiliation(s)
- Marija J. Đurić
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Angelina R. Subotić
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Ljiljana T. Prokić
- Department for Agrochemistry and Plant Physiology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Milana M. Trifunović-Momčilov
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Aleksandar D. Cingel
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Milan B. Dragićević
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Ana D. Simonović
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Snežana M. Milošević
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| |
Collapse
|