1
|
Fleury JB, Baulin VA. Aging affects the mechanical interaction between microplastics and lipid bilayers. J Chem Phys 2024; 161:144902. [PMID: 39377336 DOI: 10.1063/5.0232678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Plastic pellets, the pre-production form of many plastic products, undergo oxidation and photodegradation upon exposure to oxygen and sunlight, resulting in visible color changes. This study examines the impact of environmental aging on the mechanical interactions between pellet-derived microplastics and lipid bilayers, a critical component of biological membranes. Polyethylene pellets were collected from La Pineda beach near Tarragona, Spain, and categorized by chemical composition and yellowing index, an indicator of aging. The hydrophilicity of these pellets was assessed using contact angle measurements. Microplastics were produced by grinding and filtering these pellets and subsequently dispersed around a free-standing lipid bilayer within a 3D microfluidic chip to investigate their interactions. Our results reveal that aged microplastics exhibit a significantly increased adhesive interaction with lipid bilayers, leading to greater bilayer stretching. Theoretical modeling indicates a linear relationship between the adhesive interaction and the contact angle of the pellets, reflecting their hydrophilicity. These findings emphasize the increased mechanical impact of aged microplastics on biological membranes, which raises concerns about their potential toxicological effects on living organisms. This study highlights the importance of understanding the interactions between environmentally aged microplastics and biological systems to assess their risks, as these may differ significantly from pristine microplastics often studied under laboratory conditions.
Collapse
Affiliation(s)
- Jean-Baptiste Fleury
- Universitat des Saarlandes, Experimental Physics and Center for Biophysics, 66123 Saarbruecken, Germany
| | - Vladimir A Baulin
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
2
|
Fleury JB, Baulin VA. Synergistic Effects of Microplastics and Marine Pollutants on the Destabilization of Lipid Bilayers. J Phys Chem B 2024; 128:8753-8761. [PMID: 39219546 PMCID: PMC11403677 DOI: 10.1021/acs.jpcb.4c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microplastics have been detected in diverse environments, including soil, snowcapped mountains, and even within human organs and blood. These findings have sparked extensive research into the health implications of microplastics for living organisms. Recent studies have shown that microplastics can adsorb onto lipid membranes and induce mechanical stress. In controlled laboratory conditions, the behavior and effects of microplastics can differ markedly from those in natural environments. In this study, we investigate how exposure of microplastics to pollutants affects their interactions with lipid bilayers. Our findings reveal that pollutants, such as chemical solvents, significantly enhance the mechanical stretching effects of microplastics. This suggests that microplastics can act as vectors for harmful pollutants, facilitating their penetration through lipid membranes and thus strongly affect their biophysical properties. This research underscores the complex interplay between microplastics and environmental contaminants.
Collapse
Affiliation(s)
- Jean-Baptiste Fleury
- Experimental Physics and Center for Biophysics, Universitat des Saarlandes, 66123 Saarbruecken, Germany
| | - Vladimir A Baulin
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. dels Països Catalans, 26, 43007 Tarragona, Spain
| |
Collapse
|
3
|
Nolle F, Starke LJ, Griffo A, Lienemann M, Jacobs K, Seemann R, Fleury JB, Hub JS, Hähl H. Hydrophobin Bilayer as Water Impermeable Protein Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13790-13800. [PMID: 37726241 PMCID: PMC10552762 DOI: 10.1021/acs.langmuir.3c01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/24/2023] [Indexed: 09/21/2023]
Abstract
One of the most important properties of membranes is their permeability to water and other small molecules. A targeted change in permeability allows the passage of molecules to be controlled. Vesicles made of membranes with low water permeability are preferable for drug delivery, for example, because they are more stable and maintain the drug concentration inside. This study reports on the very low water permeability of pure protein membranes composed of a bilayer of the amphiphilic protein hydrophobin HFBI. Using a droplet interface bilayer setup, we demonstrate that HFBI bilayers are essentially impermeable to water. HFBI bilayers withstand far larger osmotic pressures than lipid membranes. Only by disturbing the packing of the proteins in the HFBI bilayer is a measurable water permeability induced. To investigate possible molecular mechanisms causing the near-zero permeability, we used all-atom molecular dynamics simulations of various HFBI bilayer models. The simulations suggest that the experimental HFBI bilayer permeability is compatible neither with a lateral honeycomb structure, as found for HFBI monolayers, nor with a residual oil layer within the bilayer or with a disordered lateral packing similar to the packing in lipid bilayers. These results suggest that the low permeabilities of HFBI and lipid bilayers rely on different mechanisms. With their extremely low but adaptable permeability and high stability, HFBI membranes could be used as an osmotic pressure-insensitive barrier in situations where lipid membranes fail such as desalination membranes.
Collapse
Affiliation(s)
- Friederike Nolle
- Department
of Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Leonhard J. Starke
- Department
of Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Alessandra Griffo
- Department
of Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany
- Max
Planck School, Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
- Max
Planck Institute for Medical Research Heidelberg, 69120 Heidelberg, Germany
| | | | - Karin Jacobs
- Department
of Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany
- Max
Planck School, Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Ralf Seemann
- Department
of Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Jean-Baptiste Fleury
- Department
of Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Jochen S. Hub
- Department
of Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Hendrik Hähl
- Department
of Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Färber N, Reitler J, Schäfer J, Westerhausen C. Transport Across Cell Membranes is Modulated by Lipid Order. Adv Biol (Weinh) 2023; 7:e2200282. [PMID: 36651118 DOI: 10.1002/adbi.202200282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Indexed: 01/19/2023]
Abstract
This study measures the uptake of various dyes into HeLa cells and determines simultaneously the degree of membrane lipid chain order on a single cell level by spectral analysis of the membrane-embedded dye Laurdan. First, this study finds that the mean generalized polarization (GP) value of single cells varies within a population in a range that is equivalent to a temperature variation of 9 K. This study exploits this natural variety of membrane order to examine the uptake as a function of GP at constant temperature. It is shown that transport across the cell membrane correlates with the membrane phase state. Specifically, higher membrane transport with increasing lipid chain order is observed. As a result, hypothermal-adapted cells with reduced lipid membrane order show less transport. Environmental factors influence transport as well. While increasing temperature reduces lipid order, it is found that locally high cell densities increase lipid order and in turn lead to increased dye uptake. To demonstrate the physiological relevance, membrane state and transport during an in vitro wound healing process are analyzed. While the uptake within a confluent cell layer is high, it decreases toward the center where the membrane lipid chain order is lowest.
Collapse
Affiliation(s)
- Nicolas Färber
- Experimental Physics I, Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159, Augsburg, Germany
- Physiology, Institute of Theoretical Medicine, University of Augsburg, Universitätsstraße 2, 86159, Augsburg, Germany
| | - Jonas Reitler
- Physiology, Institute of Theoretical Medicine, University of Augsburg, Universitätsstraße 2, 86159, Augsburg, Germany
| | - Julian Schäfer
- Physiology, Institute of Theoretical Medicine, University of Augsburg, Universitätsstraße 2, 86159, Augsburg, Germany
| | - Christoph Westerhausen
- Experimental Physics I, Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159, Augsburg, Germany
- Physiology, Institute of Theoretical Medicine, University of Augsburg, Universitätsstraße 2, 86159, Augsburg, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, 80799, Munich, Germany
| |
Collapse
|
5
|
Basham CM, Spittle S, Sangoro J, El-Beyrouthy J, Freeman E, Sarles SA. Entrapment and Voltage-Driven Reorganization of Hydrophobic Nanoparticles in Planar Phospholipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54558-54571. [PMID: 36459500 DOI: 10.1021/acsami.2c16677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Engineered nanoparticles (NPs) possess diverse physical and chemical properties, which make them attractive agents for targeted cellular interactions within the human body. Once affiliated with the plasma membrane, NPs can become embedded within its hydrophobic core, which can limit the intended therapeutic functionality and affect the associated toxicity. As such, understanding the physical effects of embedded NPs on a plasma membrane is critical to understanding their design and clinical use. Here, we demonstrate that functionalized, hydrophobic gold NPs dissolved in oil can be directly trapped within the hydrophobic interior of a phospholipid membrane assembled using the droplet interface bilayer technique. This approach to model membrane formation preserves lateral lipid diffusion found in cell membranes and permits simultaneous imaging and electrophysiology to study the effects of embedded NPs on the electromechanical properties of the bilayer. We show that trapped NPs enhance ion conductance and lateral membrane tension in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayers while lowering the adhesive energy of the joined droplets. Embedded NPs also cause changes in bilayer capacitance and area in response to applied voltage, which are nonmonotonic for DOPC bilayers. This electrophysical characterization can reveal NP entrapment without relying on changes in membrane thickness. By evaluating the energetic components of membrane tension under an applied potential, we demonstrate that these nonmonotonic, voltage-dependent responses are caused by reversible clustering of NPs within the unsaturated DOPC membrane core; aggregates form spontaneously at low voltages and are dispersed by higher transmembrane potentials of magnitude similar to those found in the cellular environment. These findings allow for a better understanding of lipid-dependent NP interactions, while providing a platform to study relationships between other hydrophobic nanomaterials and organic membranes.
Collapse
Affiliation(s)
- Colin M Basham
- Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Joyce El-Beyrouthy
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, Georgia30602, United States
| | - Eric Freeman
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, Georgia30602, United States
| | - Stephen A Sarles
- Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
6
|
Fleury JB, Baulin VA, Le Guével X. Protein-coated nanoparticles exhibit Lévy flights on a suspended lipid bilayer. NANOSCALE 2022; 14:13178-13186. [PMID: 36043913 DOI: 10.1039/d2nr01339h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lateral diffusion of nano-objects on lipid membranes is a crucial process in cell biology. Recent studies indicate that nanoparticle lateral diffusion is affected by the presence of membrane proteins and deviates from Brownian motion. Gold nanoparticles (Au NPs) stabilized by short thiol ligands were dispersed near a free-standing bilayer formed in a 3D microfluidic chip. Using dark-field microscopy, the position of single NPs at the bilayer surface was tracked over time. Numerical analysis of the NP trajectories shows that NP diffusion on the bilayer surface corresponds to Brownian motion. The addition of bovine serum albumin (BSA) protein to the solution led to the formation of a protein corona on the NP surface. We found that protein-coated NPs show anomalous superdiffusion and that the distribution of their relative displacement obeys Lévy flight statistics. This superdiffusive motion is attributed to a drastic reduction in adhesive energies between the NPs and the bilayer in the presence of the protein corona. This hypothesis was confirmed by numerical simulations mimicking the random walk of a single particle near a weakly adhesive surface. These results may be generalized to other classes of nano-objects that experience adsorption-desorption behaviour with a weakly adhesive surface.
Collapse
Affiliation(s)
- Jean-Baptiste Fleury
- Universitat des Saarlandes, Experimental Physics and Center for Biophysics, 66123 Saarbruecken, Germany.
| | - Vladimir A Baulin
- Departament Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel.lí Domingo s/n, 43007 Tarragona, Spain
| | - Xavier Le Guével
- Cancer Targets & Experimental Therapeutics, Institute for Advanced Biosciences (IAB), University of Grenoble Alpes - INSERM U1209 - CNRS UMR 5309-38000 Grenoble, France
| |
Collapse
|
7
|
Huang Y, Fuller G, Chandran Suja V. Physicochemical characteristics of droplet interface bilayers. Adv Colloid Interface Sci 2022; 304:102666. [PMID: 35429720 DOI: 10.1016/j.cis.2022.102666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/01/2022]
Abstract
Droplet interface bilayer (DIB) is a lipid bilayer formed when two lipid monolayer-coated aqueous droplets are brought in contact within an oil phase. DIBs, especially post functionalization, are a facile model system to study the biophysics of the cell membrane. Continued advances in enhancing and functionalizing DIBs to be a faithful cell membrane mimetic requires a deep understanding of the physicochemical characteristics of droplet interface bilayers. In this review, we provide a comprehensive overview of the current scientific understanding of DIB characteristics starting with the key experimental frameworks for DIB generation, visualization and functionalization. Subsequently we report experimentally measured physical, electrical and transport characteristics of DIBs across physiologically relevant lipids. Advances in simulations and mathematical modelling of DIBs are also discussed, with an emphasis on revealing principles governing the key physicochemical characteristics. Finally, we conclude the review with important outstanding questions in the field.
Collapse
|
8
|
Fleury JB, Baulin VA. Microplastics destabilize lipid membranes by mechanical stretching. Proc Natl Acad Sci U S A 2021; 118:e2104610118. [PMID: 34326264 PMCID: PMC8346836 DOI: 10.1073/pnas.2104610118] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Estimated millions of tons of plastic are dumped annually into oceans. Plastic has been produced only for 70 y, but the exponential rise of mass production leads to its widespread proliferation in all environments. As a consequence of their large abundance globally, microplastics are also found in many living organisms including humans. While the health impact of digested microplastics on living organisms is debatable, we reveal a physical mechanism of mechanical stretching of model cell lipid membranes induced by adsorbed micrometer-sized microplastic particles most commonly found in oceans. Combining experimental and theoretical approaches, we demonstrate that microplastic particles adsorbed on lipid membranes considerably increase membrane tension even at low particle concentrations. Each particle adsorbed at the membrane consumes surface area that is proportional to the contact area between particle and the membrane. Although lipid membranes are liquid and able to accommodate mechanical stress, the relaxation time is much slower than the rate of adsorption; thus, the cumulative effect from arriving microplastic particles to the membrane leads to the global reduction of the membrane area and increase of membrane tension. This, in turn, leads to a strong reduction of membrane lifetime. The effect of mechanical stretching of microplastics on living cells membranes was demonstrated by using the aspiration micropipette technique on red blood cells. The described mechanical stretching mechanism on lipid bilayers may provide better understanding of the impact of microplastic particles in living systems.
Collapse
Affiliation(s)
- Jean-Baptiste Fleury
- Experimental Physics, Universitat des Saarlandes, 66123 Saarbruecken, Germany;
- Center for Biophysics, Universitat des Saarlandes, 66123 Saarbruecken, Germany
| | - Vladimir A Baulin
- Departament Química Física i Inorgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
9
|
Huang Y, Chandran Suja V, Tajuelo J, Fuller GG. Surface energy and separation mechanics of droplet interface phospholipid bilayers. J R Soc Interface 2021; 18:20200860. [PMID: 33530859 PMCID: PMC8086854 DOI: 10.1098/rsif.2020.0860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/12/2021] [Indexed: 01/06/2023] Open
Abstract
Droplet interface bilayers are a convenient model system to study the physio-chemical properties of phospholipid bilayers, the major component of the cell membrane. The mechanical response of these bilayers to various external mechanical stimuli is an active area of research because of its implications for cellular viability and the development of artificial cells. In this article, we characterize the separation mechanics of droplet interface bilayers under step strain using a combination of experiments and numerical modelling. Initially, we show that the bilayer surface energy can be obtained using principles of energy conservation. Subsequently, we subject the system to a step strain by separating the drops in a step-wise manner, and track the evolution of the bilayer contact angle and radius. The relaxation time of the bilayer contact angle and radius along with the decay magnitude of the bilayer radius were observed to increase with each separation step. By analysing the forces acting on the bilayer and the rate of separation, we show that the bilayer separates primarily through the peeling process with the dominant resistance to separation coming from viscous dissipation associated with corner flows. Finally, we explain the intrinsic features of the observed bilayer separation by means of a mathematical model comprising the Young-Laplace equation and an evolution equation. We believe that the reported experimental and numerical results extend the scientific understanding of lipid bilayer mechanics, and that the developed experimental and numerical tools offer a convenient platform to study the mechanics of other types of bilayers.
Collapse
Affiliation(s)
- Y. Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - V. Chandran Suja
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - J. Tajuelo
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Departamento de Física Interdisciplinar, Universidad Nacional de Eduación a Distancia UNED, Madrid 28040, Spain
| | - G. G. Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|