1
|
Li X, Zhou Y, Li L, Wang T, Wang B, Che R, Zhai Y, Zhang J, Li W. Metal selenide nanomaterials for biomedical applications. Colloids Surf B Biointerfaces 2023; 225:113220. [PMID: 36889108 DOI: 10.1016/j.colsurfb.2023.113220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
Metal selenide nanomaterials have received enormous attention as they possess diverse compositions, microstructures, and properties. The combination of selenium with various metallic elements gives the metal selenide nanomaterials distinctive optoelectronic and magnetic properties, such as strong near-infrared absorption, excellent imaging properties, good stability, and long in vivo circulation. This makes metal selenide nanomaterials advantageous and promising for biomedical applications. This paper summarizes the research progress in the last five years in the controlled synthesis of metal selenide nanomaterials in different dimensions and with different compositions and structures. Then we discuss how surface modification and functionalization strategies are well-suited for biomedical fields, including tumor therapy, biosensing, and antibacterial biological applications. The future trends and issues of metal selenide nanomaterials in the biomedical field are also discussed.
Collapse
Affiliation(s)
- Xiangyang Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Yue Zhou
- Department of Colorectal & Anal Surgery, the First Hospital of Jilin University, Changchun 130031, China
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China; Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China.
| | - Ting Wang
- Department of Colorectal & Anal Surgery, the First Hospital of Jilin University, Changchun 130031, China
| | - Bao Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Rere Che
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Yutong Zhai
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Jiantao Zhang
- Department of Colorectal & Anal Surgery, the First Hospital of Jilin University, Changchun 130031, China.
| | - Wenliang Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China; Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin 132013, China.
| |
Collapse
|
2
|
Yu X, Liu X, Yang K, Chen X, Li W. Pnictogen Semimetal (Sb, Bi)-Based Nanomaterials for Cancer Imaging and Therapy: A Materials Perspective. ACS NANO 2021; 15:2038-2067. [PMID: 33486944 DOI: 10.1021/acsnano.0c07899] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Innovative multifunctional nanomaterials have attracted tremendous interest in current research by facilitating simultaneous cancer imaging and therapy. Among them, antimony (Sb)- and bismuth (Bi)-based nanoparticles are important species with multifunction to boost cancer theranostic efficacy. Despite the rapid development, the extensive previous work treated Sb- and Bi-based nanoparticles as mutually independent species, and therefore a thorough understanding of their relationship in cancer theranostics was lacking. We propose here that the identical chemical nature of Sb and Bi, being semimetals, provides their derived nanoparticles with inherent multifunction for near-infrared laser-driven and/or X-ray-based cancer imaging and therapy as well as some other imparted functions. An overview of recent progress on Sb- and Bi-based nanoparticles for cancer theranostics is provided to highlight the relationship between chemical nature and multifunction. The understanding of Sb- and Bi-based nanoparticles in this way might shed light on the further design of smart multifunctional nanoparticles for cancer theranostics.
Collapse
Affiliation(s)
- Xujiang Yu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Yang
- School of Radiation Medicine and Protection (SRMP) and School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 117597
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|