1
|
Nag R, Sivaiah A, Rao CP. Supramolecular Logic Gates Based on the Conjugates of Calixarenes and Carbohydrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4579-4591. [PMID: 38386016 DOI: 10.1021/acs.langmuir.3c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In the era of application-oriented research, laboratory to real life translation is highly regarded and in great demand. This could mean that molecular science developed for sensing and detecting a variety of chemical species awaits conversion to devices. In that, the molecular logic gates are the most promising ones where the information storage and/or data processing can be easily carried out in terms of molecular inputs and electrical response outputs. This would facilitate the simultaneous execution of a diverse array of molecular sensing functions. The recent progress in molecular logic gates based on supramolecular optical receptors, in particular, fluorescent ones, such as calixarene derivatives and carbohydrate conjugates will have a transformative impact on molecular devices and will encourage this science to yield technology. Therefore, this review provides a critical evaluation of recent publications on molecular logic gates based on the derivatives of calixarenes and glyco-conjugates, including several from our own research group, with the view that the corresponding applications are a beneficiary in laboratory-to-device translation. In addition, this review is also expected to assist young researchers in planning their research focus in the broad area of supramolecular-based logic gates targeting some specific applications.
Collapse
Affiliation(s)
- Rahul Nag
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Areti Sivaiah
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat - Surat-Dumas Road, Surat 395007, India
| | - Chebrolu Pulla Rao
- Department of Chemistry, School of Engineering and Applied Sciences, SRM University AP, Neerukonda (P.O.), Guntur, Andhra Pradesh 522240, India
| |
Collapse
|
2
|
Lorente A, Ochoa A, Rodriguez-Lavado J, Rodriguez-Nuévalos S, Jaque P, Gil S, Sáez JA, Costero AM. Unconventional OFF-ON Response of a Mono(calix[4]arene)-Substituted BODIPY Sensor for Hg 2+ through Dimerization Reversion. ACS OMEGA 2023; 8:819-828. [PMID: 36643454 PMCID: PMC9835786 DOI: 10.1021/acsomega.2c06161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
A new selective fluorogenic chemosensor for Hg2+, which combines a calixarene derivative with a BODIPY core as a fluorescent reporter, is described. The remarkable change in its fluorogenic properties in DMSO and CHCl3 has been analyzed. A study of its spectral properties on dilution, along with molecular modeling studies, allowed us to explain that this behavior involves the formation of a J-dimer, as well as how the sensing mechanism of Hg2+ proceeds.
Collapse
Affiliation(s)
- Alejandro Lorente
- Departamento
de Química Orgánica y Fisicoquímica, Facultad
de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380492 Independencia, Santiago, Chile
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Arminallee 22, 14195 Berlin, Germany
| | - Andres Ochoa
- Departamento
de Química Orgánica y Fisicoquímica, Facultad
de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380492 Independencia, Santiago, Chile
| | - Julio Rodriguez-Lavado
- Departamento
de Química Orgánica y Fisicoquímica, Facultad
de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380492 Independencia, Santiago, Chile
| | - Silvia Rodriguez-Nuévalos
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico, Universitat
de València-Universitat Politècnica de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
| | - Pablo Jaque
- Departamento
de Química Orgánica y Fisicoquímica, Facultad
de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380492 Independencia, Santiago, Chile
| | - Salvador Gil
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico, Universitat
de València-Universitat Politècnica de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
- Departamento
de Química Orgánica, Universidad
de Valencia, Doctor Moliner
50, Burjassot, 46100 Valencia, Spain
| | - José A. Sáez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico, Universitat
de València-Universitat Politècnica de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
- Departamento
de Química Orgánica, Universidad
de Valencia, Doctor Moliner
50, Burjassot, 46100 Valencia, Spain
| | - Ana M. Costero
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico, Universitat
de València-Universitat Politècnica de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
- Departamento
de Química Orgánica, Universidad
de Valencia, Doctor Moliner
50, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
3
|
Coroaba A, Al-Matarneh C, Vasiliu T, Ibanescu SA, Zonda R, Esanu I, Isac DL, Pinteala M. Revealing the supramolecular interactions of the bis(azopyrenyl) dibenzo-18-crown-6-ether system. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Gul Z, Khan S, Khan E. Organic Molecules Containing N, S and O Heteroatoms as Sensors for the Detection of Hg(II) Ion; Coordination and Efficiency toward Detection. Crit Rev Anal Chem 2022; 54:1525-1546. [PMID: 36122189 DOI: 10.1080/10408347.2022.2121600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Rapid detection of potentially toxic heavy metals like Hg(II) has attracted great attention in the last few decades due to the importance to maintain a safe and sustainable environment for human beings. Coordination chemistry and concepts therein, play an important role in the detection of Hg(II). Size, charge, and nature of the donor atom and the respective cation (metal ion), are crucial in selective interactions between the sensor and metal ions. The sensors designed for the purpose, coordinate to Hg(II) ion through various donor sites, coordination causes a change in the electron density in organic molecules and results in either visible color change or enhancing/quenching fluorescence intensity. Since Hg(II) is soft metal, with d10 electron system, so majority of the sensors have soft donor sites which prefer to coordinate with Hg(II). Oxygen is also present in some chelating ligands which is least preferred coordination site, due to its hard nature. There are several reports of replacing other ligating sites by sulfur for enhanced mercury sensing. In some cases, desulfurization is being detected as clear change in spectral behavior during the sensing process. Efforts are still in progress to design and introduce a sensor with utmost sensitivity and selectivity. In this review, we made an attempt to explain the coordination aspects of Hg(II) detectors, reasons for poor efficiency and possible suggestions to improve the selection criterion of various compounds. It will help researchers to know about important concepts in designing more sensitive and selective sensors for detection of Hg(II) in environmental and biological samples.
Collapse
Affiliation(s)
- Zarif Gul
- Department of Chemistry, University of Okara, Punjab, Pakistan
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Ezzat Khan
- Department of Chemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
- Department of Chemistry, College of Science, University of Bahrain, Zallaq 32038, Kingdom of Bahrain
| |
Collapse
|
5
|
Hazra A, Ghosh P, Roy P. A rhodamine based dual chemosensor for Al 3+ and Hg 2+: Application in the construction of advanced logic gates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120905. [PMID: 35091182 DOI: 10.1016/j.saa.2022.120905] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
A rhodamine-based compound (RBO), which has been constructed from the reaction between N-(rhodamine-6G)lactam-ethylenediamine and 2,1,3-benzoxadiazole-4-carbaldehyde, is reported here as a selective chemosensor for both Al3+ and Hg2+ ions in 10 mM HEPES buffer in water:ethanol (1:9, pH = 7.4). Absorption intensity of RBO increases considerably at 528 nm with these cations. It shows fluorescence enhancement at 550 nm by 1140- and 524-fold in the presence of Al3+ and Hg2+, respectively. LOD has been determined as 6.54 and 16.0 nM for Al3+ and Hg2+, respectively. Quantum yield and lifetime of RBO enhances with these metal ions. Fluorescence intensity of Al-probe complex or Hg-probe complex is quenched in the presence of fluoride or sulfide ion, respectively, opening a path for the construction logic gates. DFT analysis has been used to understand the spectral transitions. We have constructed a systematic development from single to five inputs complex circuit, and for the first time a time dependent five input complex logic circuit is reported herein.
Collapse
Affiliation(s)
- Ananta Hazra
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Pritam Ghosh
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Partha Roy
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India.
| |
Collapse
|
6
|
Jiang L, Zheng T, Xu Z, Li J, Li H, Tang J, Liu S, Wang Y. New NIR spectroscopic probe with a large Stokes shift for Hg 2+ and Ag + detection and living cells imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120916. [PMID: 35085998 DOI: 10.1016/j.saa.2022.120916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A new near-infrared (NIR) probe based on a coumarinyl ligand (CL) was designed and synthesized. The probe CL can be used for simultaneous fluorescent turn-on and colorimetric detection of Hg2+ and Ag+ in ethanol/water medium. Colorless solution of probe CL changed to light yellow or dark yellow after addition of Hg2+ or Ag+ ions. Meanwhile the maximum absorption band shifted from 379 nm to 404 nm and the intensity increased enormously (for Hg2+) or moderately (for Ag+). Probe CL displayed an extraordinarily large Stokes shift of 316 nm and addition of Hg2+ or Ag+ to probe CL induced enhancement in the intensity of fluorescence emission at 695 nm by 15 or 8 fold. The detection limit of CL for Hg2+ and Ag+ ions is 0.83 and 8.8 μM, respectively. The applicable pH for sensing Hg2+ by probe CL is in a broad range of 2-12. Application of probe CL for in vitro U87MG cell imaging to detect Hg2+ ions was confirmed.
Collapse
Affiliation(s)
- Lin Jiang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Tao Zheng
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| | - Zhenxiang Xu
- Penglai Xinguang Pigment Chemical Co, Ltd, Penglai 265601, China
| | - Jiayin Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Hongqi Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| | - Junjie Tang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Shicheng Liu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Yiyang Wang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Mondal S, Panja A, Halder D, Bairi P, Nandi AK. Isomerization-Induced Excimer Formation of Pyrene-Based Acylhydrazone Controlled by Light- and Solvent-Sensing Aromatic Analytes. J Phys Chem B 2021; 125:13804-13816. [PMID: 34879652 DOI: 10.1021/acs.jpcb.1c07937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pyrene is a fluorescent polycyclic aromatic hydrocarbon, and it would be interesting to determine whether its C═N-based conjugate can be used for sensing of aromatic analytes at its supramolecular aggregated state. For this purpose, we have synthesized (E)-3,4,5-tris(dodecyloxy)-N'-(pyren-1-ylmethylene)benzohydrazide (Py@B) by alkylation, substitution, and the Schiff base reaction methodology. The E-isomer of Py@B (E-Py@B) exhibits a bright fluorescence due to excimer formation in nonaromatic solvents. Upon photoirradiation with λ = 254 nm, it exhibits E-Z isomerization across the C═N bond at a low concentration (10-4 M), resulting in a quenched fluorescence intensity, and interestingly, upon photoirradiation with λ = 365 nm, the Z-isomer of Py@B returns to the E-isomer again, indicating that E-Z isomerization of Py@B is reversible in nature. The thick supramolecular aggregated morphology of E-Py@B changes to a flowery needlelike morphology after photoirradiation with λ = 254 nm. The UV-vis absorption band at 370 nm for 10-4 M Py@B in methyl cyclohexane (MCH) is due to excimer formation for closer proximity of pyrene moieties present in E-Py@B and changes to the absorption peak at 344 nm for its Z-isomer formation. The fluorescence spectroscopy results also support the fact that the optimum concentration of the E-isomer of Py@B is 2 × 10-4 M in MCH for excimer formation. From spectral results, it may be concluded that nonaromatic solvents assist in constructing the excimer, but aromatic solvents resist forming an excimer complex of E-Py@B. The fluorescent emission of E-Py@B in MCH is quickly quenched on addition of different aromatic analytes through both static and dynamic pathways. In the solid state, E-Py@B also senses aromatic vapors efficiently via fluorescence quenching. Absorbance spectra of a model molecule obtained using time-dependent density functional theory (TDDFT) calculations on a DFT-optimized structure indicate complex adduct formation between E-Py@B and aromatic analytes from the well-matched theoretical and experimental UV-vis spectra on addition of different analytes with E-Py@B.
Collapse
Affiliation(s)
- Sanjoy Mondal
- Polymer Science Unit, School of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Aditi Panja
- Polymer Science Unit, School of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Debabrata Halder
- School of Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Partha Bairi
- Polymer Science Unit, School of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Arun K Nandi
- Polymer Science Unit, School of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
8
|
Gassoumi B, Ben Mohamed F, Castro M, Melendez F, Karayel A, Nouar L, Madi F, Ghalla H, Özkınalı S, Kovalenko V, Ben Chaabane R, Ben Ouada H. In silico exploration of O-H…X2+ (X = Cu, Ag, Hg) interaction, targeted adsorption zone, charge density iso-surface, O-H proton analysis and topographic parameters theory for calix[6]arene and calix[8]arene as model. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Merz V, Merz J, Kirchner M, Lenhart J, Marder TB, Krueger A. Pyrene-Based "Turn-Off" Probe with Broad Detection Range for Cu 2+ , Pb 2+ and Hg 2+ Ions. Chemistry 2021; 27:8118-8126. [PMID: 33819362 PMCID: PMC8251986 DOI: 10.1002/chem.202100594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 01/02/2023]
Abstract
Detection of metals in different environments with high selectivity and specificity is one of the prerequisites of the fight against environmental pollution with these elements. Pyrenes are well suited for the fluorescence sensing in different media. The applied sensing principle typically relies on the formation of intra- and intermolecular excimers, which is however limiting the sensitivity range due to masking of e. g. quenching effects by the excimer emission. Herein we report a highly selective, structurally rigid chemical sensor based on the monomer fluorescence of pyrene moieties bearing triazole groups. This sensor can quantitatively detect Cu2+ , Pb2+ and Hg2+ in organic solvents over a broad concentrations range, even in the presence of ubiquitous ions such as Na+ , K+ , Ca2+ and Mg2+ . The strongly emissive sensor's fluorescence with a long lifetime of 165 ns is quenched by a 1 : 1 complex formation upon addition of metal ions in acetonitrile. Upon addition of a tenfold excess of the metal ion to the sensor, agglomerates with a diameter of about 3 nm are formed. Due to complex interactions in the system, conventional linear correlations are not observed for all concentrations. Therefore, a critical comparison between the conventional Job plot interpretation, the method of Benesi-Hildebrand, and a non-linear fit is presented. The reported system enables the specific and robust sensing of medically and environmentally relevant ions in the health-relevant nM range and could be used e. g. for the monitoring of the respective ions in waste streams.
Collapse
Affiliation(s)
- Viktor Merz
- Institute for Organic ChemistryJulius-Maximilians University WürzburgAm Hubland97074WürzburgGermany
| | - Julia Merz
- Institute for Inorganic ChemistryJulius-Maximilians University Würzburg, WürzburgAm Hubland97074WürzburgGermany
| | - Maximilian Kirchner
- Institute for Organic ChemistryJulius-Maximilians University WürzburgAm Hubland97074WürzburgGermany
| | - Julian Lenhart
- Institute for Organic ChemistryJulius-Maximilians University WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute for Inorganic ChemistryJulius-Maximilians University Würzburg, WürzburgAm Hubland97074WürzburgGermany
| | - Anke Krueger
- Institute for Organic ChemistryJulius-Maximilians University WürzburgAm Hubland97074WürzburgGermany
- Wilhelm Conrad Röntgen Center for Complex Materials Research (RCCM)Julius-Maximilians University Würzburg, WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
10
|
Bhardwaj V, Nurchi VM, Sahoo SK. Mercury Toxicity and Detection Using Chromo-Fluorogenic Chemosensors. Pharmaceuticals (Basel) 2021; 14:123. [PMID: 33562543 PMCID: PMC7915024 DOI: 10.3390/ph14020123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Mercury (Hg), this non-essential heavy metal released from both industrial and natural sources entered into living bodies, and cause grievous detrimental effects to the human health and ecosystem. The monitoring of Hg2+ excessive accumulation can be beneficial to fight against the risk associated with mercury toxicity to living systems. Therefore, there is an emergent need of novel and facile analytical approaches for the monitoring of mercury levels in various environmental, industrial, and biological samples. The chromo-fluorogenic chemosensors possess the attractive analytical parameters of low-cost, enhanced detection ability with high sensitivity, simplicity, rapid on-site monitoring ability, etc. This review was narrated to summarize the mercuric ion selective chromo-fluorogenic chemosensors reported in the year 2020. The design of sensors, mechanisms, fluorophores used, analytical performance, etc. are summarized and discussed.
Collapse
Affiliation(s)
- Vinita Bhardwaj
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat 395007, India;
| | - Valeria M. Nurchi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy
| | - Suban K. Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat 395007, India;
| |
Collapse
|
11
|
Ozkan SC, Aksakal F, Yilmaz A. Synthesis of novel calix[4]arene p-benzazole derivatives and investigation of their DNA binding and cleavage activities with molecular docking and experimental studies. RSC Adv 2020; 10:38695-38708. [PMID: 35517565 PMCID: PMC9057276 DOI: 10.1039/d0ra07486a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 12/05/2022] Open
Abstract
In this study, novel p-benzimidazole-derived calix[4]arene compounds with different structures, and a benzothiazole-derived calix[4]arene compound, were synthesized by a microwave-assisted method and their structures were determined by FTIR, 1H NMR, 13C NMR, MALDI-TOF mass spectroscopy, and elemental analysis. The effects of functional calixarenes against bacterial (pBR322 plasmid DNA) and eukaryotic DNA (calf thymus DNA = CT-DNA) were investigated. The studies with plasmid DNA have shown that compounds 6 and 10 containing methyl and benzyl groups, respectively, have DNA cleavage activity at the highest concentrations (10 000 μM). Interactions with plasmid DNA using some restriction enzymes (BamHI and HindIII) were also investigated. The binding ability of p-substituted calix[4]arene compounds towards CT-DNA was examined using UV-vis and fluorescence spectroscopy and it was determined that some compounds showed efficiency. In particular, it was observed that the functional compounds (10 and 5) containing benzyl and chloro-groups had higher activity (K b binding constants were found to be 7.1 × 103 M-1 and 9.3 × 102 M-1 respectively) on DNA than other compounds. Competitive binding experiments using ethidium bromide also gave an idea about the binding properties. Docking studies of the synthesized compounds with DNA were performed to predict the binding modes, affinities and noncovalent interactions stabilizing the DNA-compound complexes at the molecular level. Docking results were in good agreement with the experimental findings on the DNA binding activities of compounds. Based on these results, this preliminary study could shed light on future experimental antibacterial and/or anticancer research.
Collapse
Affiliation(s)
- Seyda Cigdem Ozkan
- Department of Chemical and Chemical Processing Technologies, Acigol Vocational School of Technical Sciences, Nevsehir Haci Bektas Veli University Nevsehir Turkey +90 332 2412499 +90 332 2233866
- Department of Chemistry, Faculty of Science, Selcuk University 42075 Konya Turkey
| | - Fatma Aksakal
- Department of Chemistry, Faculty of Science, Hacettepe University Ankara Turkey
| | - Aydan Yilmaz
- Department of Chemistry, Faculty of Science, Selcuk University 42075 Konya Turkey
| |
Collapse
|