1
|
Azhar S, Ahmad KS, Abrahams I, Ingsel T, Gupta RK, Al-Sadoon MK, Ashraf GA, Gul MM. Biogenic Synthesis and Characterization of ZrO2-La2O3 and Study of its Scope in Energy Based Applications: Supercapacitors & Water Splitting. J Inorg Organomet Polym Mater 2024. [DOI: 10.1007/s10904-024-03499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/07/2024] [Indexed: 01/06/2025]
|
2
|
Shaheen I, Ahmad KS, Zequine C, Gupta RK, Thomas AG, Qureshi A, Malik MA, Niazi JH. Phyto-synthesized facile Pd/NiOPdO ternary nanocomposite for electrochemical supercapacitor applications. RSC Adv 2022; 12:35409-35417. [DOI: 10.1039/d2ra07292k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The natural phyto bio-factories were successfully utilized for the cost-effective synthesis of facile Pd/NiOPdO ternary nanocomposite for energy storage application with enhanced electro-active site.
Collapse
Affiliation(s)
- Irum Shaheen
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
- SUNUM Nanotechnology Research, and Application Center, Sabanci University, Orta Mah., Tuzla 34956, Istanbul, Turkey
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Camila Zequine
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, KS 66762, USA
| | - Ram K. Gupta
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, KS 66762, USA
| | - Andrew G. Thomas
- Department of Materials, Photon Science Institute, Sir Henry Royce Institute, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
| | - Anjum Qureshi
- SUNUM Nanotechnology Research, and Application Center, Sabanci University, Orta Mah., Tuzla 34956, Istanbul, Turkey
| | - Mohammad Azad Malik
- Department of Materials, Photon Science Institute, Sir Henry Royce Institute, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
| | - Javed H. Niazi
- SUNUM Nanotechnology Research, and Application Center, Sabanci University, Orta Mah., Tuzla 34956, Istanbul, Turkey
| |
Collapse
|
3
|
Rehman F, Memon FH, Bhatti Z, Iqbal M, Soomro F, Ali A, Thebo KH. Graphene-based composite membranes for isotope separation: challenges and opportunities. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Graphene-based membranes have got significant attention in wastewater treatment, desalination, gas separation, pervaporation, fuel cell, energy storage applications due to their supreme properties. Recently, studies have confirmed that graphene based membranes can also use for separation of isotope due to their ideal thickness, large surface area, good affinity, 2D structure etc. Herein, we review the latest groundbreaking progresses in both theoretically and experimentally chemical science and engineering of both nanoporous and lamellar graphene-based membrane for separation of different isotopes. Especially focus will be given on the current issues, engineering hurdles, and limitations of membranes designed for isotope separation. Finally, we offer our experiences on how to overcome these issues, and present an ideas for future improvement and research directions. We hope, this article is provide a timely knowledge and information to scientific communities, and those who are already working in this direction.
Collapse
Affiliation(s)
- Faisal Rehman
- Department of Mechatronics Engineering , College of EME, National University of Sciences and Technology (NUST) , Peshawar Road , Rawalpindi , Pakistan
| | - Fida Hussain Memon
- Department of Electrical Engineering , Sukkur IBA University , Sindh , Pakistan
| | - Zubeda Bhatti
- Department of Physics and Electronics , Shah Abdul Latif University , Khairpur Mirs , 66020 , Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry , Faculty of Natural Science, The University of Haripur KPK , Haripur , 22620 , Pakistan
| | - Faheeda Soomro
- Department of Linguistics and Human Sciences , Begum Nusrat Bhutto Women University , Sukkur Sindh Pakistan
| | - Akbar Ali
- Department of Molecular Engineering , Faculty of Process and Environmental Engineering, Lodz University of Technology , Lodz , Poland
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (UCAS) , Shenyang , China
| |
Collapse
|
4
|
Bhatti SA, Memon FH, Rehman F, Bhatti Z, Naqvi T, Thebo KH. Recent progress in decontamination system against chemical and biological materials: challenges and future perspectives. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Environmental contamination is one of the key issues of developing countries in recent days, and several types of methods and technologies have been developed to overcome these issues. This paper highlights the importance of decontamination in a contaminated environment that normally precedes protection, detection and identification followed by medical support. Further, this paper especially focuses on individual and collective NBC decontamination required on navy ships and correspondingly presents solutions (viable and economical) through the use of indigenously developed decontamination equipment. The paper also highlights the integration of various decontamination technologies with pre-existing ship decontamination systems, indicating the need for various decontaminants. Finally, we will also focus on new decontamination systems based on nanomaterials and enzymes and their utilization.
Collapse
Affiliation(s)
- Saeed Akhtar Bhatti
- Department of Defence & Strategic Studies , Quaid-i-Azam University , Islamabad , 45320 , Pakistan
| | - Fida Hussain Memon
- Department of Electrical Engineering , Sukkur IBA University , Sukkur , Sindh , Pakistan
| | - Faisal Rehman
- Department of Mechatronics Engineering , College of EME, National University of Sciences and Technology (NUST) , Peshawar Road , Rawalpindi , Pakistan
| | - Zubeda Bhatti
- Department of Physics and Electronics , Shah Abdul Latif University , Khairpur Mirs , 66020 , Pakistan
| | - Tehsin Naqvi
- Department of Defence & Strategic Studies , Quaid-i-Azam University , Islamabad , 45320 , Pakistan
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (UCAS) , Shenyang , China
| |
Collapse
|
5
|
Mirbagheri N, Campos R, Ferapontova EE. Electrocatalytic Oxidation of Water by OH
−
‐ and H
2
O‐Capped IrO
x
Nanoparticles Electrophoretically Deposited on Graphite and Basal Plane HOPG: Effect of the Substrate Electrode**. ChemElectroChem 2021. [DOI: 10.1002/celc.202100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naghmehalsadat Mirbagheri
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 1590-14 DK-8000 Aarhus C Denmark
- Department of Microsystems Engineering – IMTEK University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Rui Campos
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 1590-14 DK-8000 Aarhus C Denmark
- AXES research group and NANOlab Center of Excellence University of Antwerp Groenenborgerlaan 171 2020 Antwerpen Belgium
| | - Elena E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 1590-14 DK-8000 Aarhus C Denmark
| |
Collapse
|