1
|
Vishwakarma K, Ravi S, Mittal S. Ab initio Modeling of Hydrogen Bonding of Remdesivir and Adenosine with Uridine. Chemphyschem 2024; 25:e202300552. [PMID: 37983746 DOI: 10.1002/cphc.202300552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/22/2023]
Abstract
Remdesivir (RDV) emerged as an effective drug against the SARS-CoV-2 virus pandemic. One of the crucial steps in the mechanism of action of RDV is its incorporation into the growing RNA strand. RDV, an adenosine analogue, forms Watson-Crick (WC) type hydrogen bonds with uridine in the complementary strand and the strength of this interaction will control efficacy of RDV. While there is a plethora of structural and energetic information available about WC H-bonds in natural base pairs, the interaction of RDV with uridine has not been studied yet at the atomic level. In this article, we aim to bridge this gap, to understand RDV and its hydrogen bonding interactions, by employing density functional theory (DFT) at the M06-2X/cc-pVDZ level. The interaction energy, QTAIM analysis, NBO and SAPT2 are performed for RDV, adenosine, and their complex with uridine to gain insights into the nature of hydrogen bonding. The computations show that RDV has similar geometry, energetic, molecular orbitals, and aromaticity as adenosine, suggesting that RDV is an effective adenosine analogue. The important geometrical parameters, such as bond distances and red-shift in the stretching vibrational modes of adenosine, RDV and uridine identify two WC-type H-bonds. The relative strength of these two H-bonds is computed using QTAIM parameters and the computed hydrogen bond energy. Finally, the SAPT2 study is performed at the minima and at non-equilibrium base pair distances to understand the dominant intermolecular physical force. This study, based on a thorough analysis of a variety of computations, suggests that both adenosine and RDV have similar structure, energetic, and hydrogen bonding behaviour.
Collapse
Affiliation(s)
- Kamini Vishwakarma
- School of Advance Science and Languages, VIT Bhopal University, Kothrikalan, Sehore, Madhya, Pradesh, 466114, India
| | - Satyam Ravi
- School of Advance Science and Languages, VIT Bhopal University, Kothrikalan, Sehore, Madhya, Pradesh, 466114, India
| | - Sumit Mittal
- School of Advance Science and Languages, VIT Bhopal University, Kothrikalan, Sehore, Madhya, Pradesh, 466114, India
| |
Collapse
|
2
|
Petelski AN, Pamies SC, Márquez MJV, Sosa GL, Peruchena NM. Impact of covalent modifications on the hydrogen bond strengths in diaminotriazine supramolecules. Chemphyschem 2022; 23:e202200151. [PMID: 35420735 DOI: 10.1002/cphc.202200151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Indexed: 11/10/2022]
Abstract
Melamine (M) is a popular triamine triazine compound in the field of supramolecular materials. In this work, we have computationally investigated how substituents can be exploited to improve the binding strength of M supramolecules. Two types of covalent modifications were studied: the substitution of an H atom within an amine group -NHR, and the replacement of the whole -NH 2 group (R = H, F, CH 3 and COCH 3 ). Through our dispersion-corrected density functional theory computations, we explain which covalent modification will show the best self-assembling capabilities, and why the binding energy is enhanced. Our charge density and molecular orbital analyses indicate that the best substituents are those that generate a charge accumulation on the endocyclic N atom, providing an improvement of the electrostatic attraction. At the same time the substituent assists the main N-H⋅⋅⋅N hydrogen bonds by interacting with the amino group of the other monomer. We also show how the selected group notably boosts the strength of hexameric rosettes. This research, therefore, provides molecular tools for the rational design of emerging materials based on uneven hydrogen-bonded arrangements.
Collapse
Affiliation(s)
- Andre Nicolai Petelski
- Universidad Tecnológica Nacional: Universidad Tecnologica Nacional, Chemical Engioneering, French 414, H3500CHJ, Resistencia, ARGENTINA
| | - Silvana Carina Pamies
- Universidad Tecnológica Nacional: Universidad Tecnologica Nacional, Chemical Engineering, French 414, H3500CHJ, Resistencia, ARGENTINA
| | - María Josefina Verónica Márquez
- Universidad Tecnológica Nacional: Universidad Tecnologica Nacional, Chemical Engineering, French 414, H3500CHJ, Resistencia, ARGENTINA
| | - Gladis Laura Sosa
- Universidad Tecnológica Nacional: Universidad Tecnologica Nacional, Chemical Engineering, French 414, H3500CHJ, Resistencia, ARGENTINA
| | - Nélida María Peruchena
- National University of the Northeast: Universidad Nacional del Nordeste, Chemistry, Avenida Libertad 5460, 3400, Corrientes, ARGENTINA
| |
Collapse
|
3
|
Szatylowicz H, Stasyuk OA, Solà M, Krygowski TM. Aromaticity of nucleic acid bases. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Halina Szatylowicz
- Faculty of Chemistry Warsaw University of Technology, Noakowskiego 3, 00‐664 Warsaw Poland
| | - Olga A. Stasyuk
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, C/ Maria Aurélia Capmany 69, 17003 Girona Spain
| | - Miquel Solà
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, C/ Maria Aurélia Capmany 69, 17003 Girona Spain
| | | |
Collapse
|
4
|
de Souza
Farias SA, da Costa KS, Martins JB. Analysis of Conformational, Structural, Magnetic, and Electronic Properties Related to Antioxidant Activity: Revisiting Flavan, Anthocyanidin, Flavanone, Flavonol, Isoflavone, Flavone, and Flavan-3-ol. ACS OMEGA 2021; 6:8908-8918. [PMID: 33842761 PMCID: PMC8028018 DOI: 10.1021/acsomega.0c06156] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 06/03/2023]
Abstract
Understanding the antioxidant activity of flavonoids is important to investigate their biological activities as well as to design novel molecules with low toxicity and high activity. Aromaticity is a chemical property found in cyclic structures that plays an important role in their stability and reactivity, and its investigation can help us to understand the antioxidant activity of some heterocyclic compounds. In the present study, we applied the density functional theory (DFT) to investigate the properties of seven flavonoid structures with well-reported antioxidant activity: flavan, anthocyanidin, flavanone, flavonol, isoflavone, flavone, and flavan-3-ol. Conformational, structural, magnetic, and electronic analyses were performed using nuclear magnetic resonance, ionization potentials, electron affinity, bond dissociation energy, proton affinity, frontier molecular orbitals (highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO)), and aromaticity through nucleus-independent chemical shifts to analyze these seven flavonoid structures. We revised the influence of hydroxyl groups on the properties of flavonoids and also investigated the influence of the aromaticity of these seven flavonoids on the antioxidant activity.
Collapse
Affiliation(s)
- Sergio Antônio de Souza
Farias
- Laboratory
of Molecular Modeling, Institute of Educational Sciences, Federal University of Western Pará, 68040-255 Santarém, Pará, Brazil
| | - Kauê Santana da Costa
- Institute
of Biodiversity, Federal University of Western
Pará, 68040-255 Santarém, Pará, Brazil
| | - João B.
L. Martins
- Laboratory
of Computational Chemistry, Institute of Chemistry, University of Brasilia, 4478 Brasília, Distrito
Federal, Brazil
| |
Collapse
|
5
|
Wieczorkiewicz PA, Szatylowicz H, Krygowski TM. Mutual Relations between Substituent Effect, Hydrogen Bonding, and Aromaticity in Adenine-Uracil and Adenine-Adenine Base Pairs. Molecules 2020; 25:E3688. [PMID: 32823565 PMCID: PMC7464026 DOI: 10.3390/molecules25163688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
The electronic structure of substituted molecules is governed, to a significant extent, by the substituent effect (SE). In this paper, SEs in selected nucleic acid base pairs (Watson-Crick, Hoogsteen, adenine-adenine) are analyzed, with special emphasis on their influence on intramolecular interactions, aromaticity, and base pair hydrogen bonding. Quantum chemistry methods-DFT calculations, the natural bond orbital (NBO) approach, the Harmonic Oscillator Model of Aromaticity (HOMA) index, the charge of the substituent active region (cSAR) model, and the quantum theory of atoms in molecules (QTAIM)-are used to compare SEs acting on adenine moiety and H-bonds from various substitution positions. Comparisons of classical SEs in adenine with those observed in para- and meta-substituted benzenes allow for the better interpretation of the obtained results. Hydrogen bond stability and its other characteristics (e.g., covalency) can be significantly changed as a result of the SE, and its consequences are dependent on the substitution position. These changes allow us to investigate specific relations between H-bond parameters, leading to conclusions concerning the nature of hydrogen bonding in adenine dimers-e.g., H-bonds formed by five-membered ring nitrogen acceptor atoms have an inferior, less pronounced covalent nature as compared to those formed by six-membered ring nitrogen. The energies of individual H-bonds (obtained by the NBO method) are analyzed and compared to those predicted by the Espinosa-Molins-Lecomte (EML) model. Moreover, both SE and H-bonds can significantly affect the aromaticity of adenine rings; long-distance SEs on π-electron delocalization are also documented.
Collapse
Affiliation(s)
- Paweł A. Wieczorkiewicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
| | - Halina Szatylowicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
| | | |
Collapse
|