1
|
Rajakulasooriya RSR, Fernando SSN, Gunasekara TDCP, Jayaweera PM, Kumarasinghe KGUR, Thabrew HHPMJ, Chan E, Buddhika RBJ, Weerasinghe GGYH, Karunarathna KAAU. In vivo toxicological evaluation of 3-benzylideneindolin-2-one: antifungal activity against clinical isolates of dermatophytes. BMC Pharmacol Toxicol 2025; 26:16. [PMID: 39849631 PMCID: PMC11759438 DOI: 10.1186/s40360-025-00850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Dermatophytes, the primary causative agents of superficial cutaneous fungal infections in humans, present a significant therapeutic challenge owing to the increasing prevalence of recurrent infections and the emergence of antifungal resistance. To address this critical gap, this study was designed to investigate the antifungal potential of 3-benzylideneindolin-2-one against dermatophytes and assess its in vivo toxicological profile using brine shrimp and zebrafish embryo models. METHODS The antifungal activity of 3-benzylideneindolin-2-one was evaluated against 30 clinical isolates of dermatophyte species, including Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum gypseum, Microsporum canis, and Epidermophyton floccosum, by determining the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) using the broth microdilution method. The fungicidal activity was evaluated using time-kill assays. Toxicological effects were investigated using the brine shrimp lethality assay to determine Artemia salina nauplii mortality after 48 h of exposure, and the fish embryo acute toxicity test, which assessed lethality and developmental abnormalities in zebrafish (Danio rerio) embryos over a 96 h post-fertilization period. RESULTS 3-Benzylideneindolin-2-one exhibited consistent fungicidal activity across all dermatophyte species, with MICs ranging from 0.25 to 8 mg/L and MFCs ranging from 1 to 32 mg/L. Time-kill assays revealed a concentration-dependent fungicidal effect on the microconidia. The compound exhibited moderate toxicity to A. salina nauplii, with LC50 values of 69.94 mg/L and 52.70 mg/L at 24 and 48 h, respectively, while showing no significant lethality within the MIC range. In zebrafish embryos, concentrations below 7.5 mg/L did not significantly affect lethality, hatchability, or induce morphological abnormalities. However, at a concentration of 10 mg/L, the compound induced mild toxicity in embryos, evidenced by a significant increase in mortality and the presence of morphological anomalies such as yolk-sac and pericardial edema compared to the control group. CONCLUSIONS The consistent antifungal activity of 3-benzylideneindolin-2-one against clinically significant dermatophyte species, combined with its low toxicity within the therapeutic window, underscores its potential as a promising lead compound for the development of effective therapeutics for dermatophytosis.
Collapse
Affiliation(s)
- R Shashika R Rajakulasooriya
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, The Open University of Sri Lanka, Nugegoda, Sri Lanka.
| | - S S Neluka Fernando
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - T D Chinthika P Gunasekara
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Pradeep M Jayaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - K G Upul R Kumarasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | - Enoch Chan
- Discipline of Pharmacy, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - R B J Buddhika
- Department of Pharmacy, Faculty of Health Sciences, The Open University of Sri Lanka, Nugegoda, Sri Lanka
| | - G G Yashoda H Weerasinghe
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, The Open University of Sri Lanka, Nugegoda, Sri Lanka
| | - K A A Ureshani Karunarathna
- Department of Basic Sciences, Faculty of Allied Health Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
2
|
Najafi M, Marandi G. Synthesis of novel organophosphorus compounds via reaction of substituted 2-oxoindoline-3-ylidene with acetylenic diesters and triphenylphosphine or triphenyl phosphite. Sci Rep 2024; 14:6314. [PMID: 38491081 PMCID: PMC10943016 DOI: 10.1038/s41598-024-56774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
An efficient reaction between triphenylphosphine or triphenyl phosphite and 2-oxoindoline-3-ylidene derivatives in the presence of acetylenic esters leads to functionalized 2-oxoindoline-3-ylidene containing phosphorus ylieds or phosphonate esters. All compounds obtained in these reactions are stable and have good yields.
Collapse
Affiliation(s)
- Mahsa Najafi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Ghasem Marandi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
3
|
Singh S, Chakrabortty G, Raha Roy S. Skeletal rearrangement through photocatalytic denitrogenation: access to C-3 aminoquinolin-2(1 H)-ones. Chem Sci 2023; 14:12541-12547. [PMID: 38020365 PMCID: PMC10646921 DOI: 10.1039/d3sc04447e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
The addition of an amine group to a heteroaromatic system is a challenging synthetic process, yet it is an essential one in the development of many bioactive molecules. Here, we report an alternative method for the synthesis of 3-amino quinolin-2(1H)-one that overcomes the limitations of traditional methods by editing the molecular skeleton via a cascade C-N bond formation and denitrogenation process. We used TMSN3 as an aminating agent and a wide variety of 3-ylideneoxindoles as synthetic precursors for the quinolin-2(1H)-one backbone, which demonstrates remarkable tolerance of sensitive functional groups. The control experiments showed that the triazoline intermediate plays a significant role in the formation of the product. The spectroscopic investigation further defined the potential reaction pathways.
Collapse
Affiliation(s)
- Swati Singh
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Gopal Chakrabortty
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
4
|
Doellerer D, Pooler DRS, Guinart A, Crespi S, Feringa BL. Highly Efficient Oxindole-Based Molecular Photoswitches. Chemistry 2023; 29:e202301634. [PMID: 37345715 DOI: 10.1002/chem.202301634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
3-Benzylidene-indoline-2-ones play a prominent role in the pharmaceutical industry due to the diverse biomedical applications of oxindole heterocycles. Despite the extensive reports on their biological properties, these compounds have hardly been studied for their photochemical activity. Here, we present 3-benzylidene-indoline-2-ones as a promising class of photoswitches with high yields, robust photochemical switching with quantum yields reaching up to 50 % and potential for biological applications.
Collapse
Affiliation(s)
- Daniel Doellerer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Daisy R S Pooler
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ainoa Guinart
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Chemistry -, Ångström Laboratory, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
5
|
Shi SX, Zhang HH, Wang YL, Jiang LH, Xu PF, Luo YC. Visible-Light-Mediated Intermolecular [2 + 2]-Cycloaddition Reaction of 3-Alkylideneindolin-2-one with Alkenes via Triplet Energy Transfer for the Synthesis of 3-Spirocyclobutyl Oxindoles. Org Lett 2023; 25:5426-5430. [PMID: 37458365 DOI: 10.1021/acs.orglett.3c01695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
[2 + 2]-Cycloaddition is the most straightforward approach to the construction of cyclobutanes. In this paper, the intermolecular [2 + 2]-cycloaddition reaction of 3-alkylideneindolin-2-ones with alkenes was achieved. This reaction can be used in the synthesis of 3-spirocyclobutyl oxindoles, polycyclic oxindoles, and late stage modification of some drug molecules.
Collapse
Affiliation(s)
- Shao-Xian Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Huan-Huan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yi-Lin Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Lin-Hong Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P. R. China
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
6
|
Novikova D, Grigoreva T, Gurzhiy V, Tribulovich V. Is It Possible to Obtain a Product of the Desired Configuration from a Single Knoevenagel Condensation? Isomerization vs. Stereodefined Synthesis. Int J Mol Sci 2023; 24:11339. [PMID: 37511099 PMCID: PMC10379276 DOI: 10.3390/ijms241411339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The biological activity of compounds directly depends on the three-dimensional arrangement of affinity fragments since a high degree of pharmacophore compliance with the binding site is required. 3-Benzylidene oxindoles are privileged structures due to their wide spectrum of biological activity, synthetic availability, and ease of modification. In particular, both kinase inhibitors and kinase activators can be found among 3-benzylidene oxindoles. In this work, we studied model compounds obtained via oxindole condensation with aldehydes and alkylphenones. These condensation products can exist in the form of E- and Z-isomers and also undergo isomerization in solutions. The factors causing isomeric transformation of these compounds were established. Comparative kinetic studies to obtain quantitative characteristics of UV-driven isomerization were first performed. The results obtained indicate dramatic differences in two subclasses, which should be considered when developing biologically active molecules.
Collapse
Affiliation(s)
- Daria Novikova
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg 190013, Russia
| | - Tatyana Grigoreva
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg 190013, Russia
| | - Vladislav Gurzhiy
- Crystallography Department, Institute of Earth Sciences, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Vyacheslav Tribulovich
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg 190013, Russia
| |
Collapse
|
7
|
Abstract
Blue LED-promoted cross-coupling olefination of symmetrical and unsymmetrical 3-arylidene oxindoles has been described from diazoindolones and diphenylmethanethiones. Thermal olefin isomerization and stereoselective synthesis of 3-arylidene oxindoles were also demonstrated in good yield.
Collapse
Affiliation(s)
| | - Chinnathambi Ramesh
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| |
Collapse
|
8
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Abd El-wahab HA, Mansour HS, Ali AM, El-Awady R, Aboul-Fadl T. New Cell Cycle Checkpoint Pathways Regulators with 2-Oxo-indoline Scaffold as Potential Anticancer Agents: Design, Synthesis, Biological Activities and In Silico Studies. Bioorg Chem 2022; 120:105622. [DOI: 10.1016/j.bioorg.2022.105622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 12/18/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
|
10
|
Mansour HS, Abd El-Wahab HAA, Ali AM, Aboul-Fadl T. Inversion kinetics of some E/ Z 3-(benzylidene)-2-oxo-indoline derivatives and their in silico CDK2 docking studies. RSC Adv 2021; 11:7839-7850. [PMID: 35423292 PMCID: PMC8695066 DOI: 10.1039/d0ra10672k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/01/2021] [Indexed: 11/30/2022] Open
Abstract
The structure-based design of some CDK2 inhibitors with a 3-(benzylidene)indolin-2-one scaffold as potential anticancer agents was realized. Target compounds were obtained as E/Z mixtures and were resolved to corresponding E- and Z-diastereomers. In silico studies using MOE 2019.01 software revealed better docking on the targeted enzyme for the Z-diastereomer compared to the E-one. A time-dependent kinetic isomerization study was carried out for the inversion of E/Z diastereomers in DMSO-d6 at room temperature, and were found to obey the first order kinetic reactions. Furthermore, a determination of the kinetic inter-conversion rate order by graphical analysis method and calculation of the rate constant and half-life of this kinetic process were carried out. For the prediction of the stability of the diastereomer(s), a good multiple regression equation was generated between the reaction rates of isomerization and some QM parameters with significant p value.
Collapse
Affiliation(s)
- Hany S Mansour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| | - Hend A A Abd El-Wahab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| | - Ahmed M Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| | - Tarek Aboul-Fadl
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| |
Collapse
|