1
|
Shang LM, Li SC, Jiang J, Mao LB, Yu SH. Bioinspired High-Magnesium Calcite for Efficiently Reducing Chemical Oxygen Demand in Lake Water. SMALL METHODS 2024; 8:e2300236. [PMID: 37415544 DOI: 10.1002/smtd.202300236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Indexed: 07/08/2023]
Abstract
Organic matter accumulation in water can cause serious problems such as oxygen depletion and quality deterioration of waters. While calcium carbonate has been used as green and low-cost adsorbent for water treatment, its efficiency in reducing the chemical oxygen demand (COD) of water, which is a measure of organic pollution, is restrained by the limited specific surface area and chemical activity. Herein, inspired by the high-magnesium calcite (HMC) found in biological materials, a feasible method to synthesize fluffy dumbbell-like HMC with large specific surface area is reported. The magnesium inserting increases the chemical activity of the HMC moderately but without lowering its stability too much. Therefore, the crystalline HMC can retain its phase and morphology in aqueous environment for hours, which allows the establishment of adsorption equilibrium between the solution and the adsorbent that retains its initial large specific surface area and improved chemical activity. Consequently, the HMC exhibits notably enhanced capability in reducing the COD of lake water polluted by organics. This work provides a synergistic strategy to rationally design high-performance adsorbents by simultaneously optimizing the surface area and steering the chemical activity.
Collapse
Affiliation(s)
- Li-Mei Shang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Si-Cheng Li
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Jiang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Li-Bo Mao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Tan C, Dima C, Huang M, Assadpour E, Wang J, Sun B, Kharazmi MS, Jafari SM. Advanced CaCO3-derived delivery systems for bioactive compounds. Adv Colloid Interface Sci 2022; 309:102791. [DOI: 10.1016/j.cis.2022.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
|
3
|
Shukla D, Nandi NK, Singh B, Singh A, Kumar B, Narang RK, Singh C. Ferulic acid-loaded drug delivery systems for biomedical applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
4
|
Sasamoto R, Kanda Y, Yamanaka S. Difference in cadmium chemisorption on calcite and vaterite porous particles. CHEMOSPHERE 2022; 297:134057. [PMID: 35227751 DOI: 10.1016/j.chemosphere.2022.134057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Cadmium is adsorbed on calcium carbonate via chemisorption. All calcium carbonate polymorphs generate otavite (cadmium carbonate), indicating that the crystallographic differences in calcium carbonate should affect the chemisorption equilibrium and kinetics. This study investigates the influences of the polymorph and specific surface area on cadmium adsorption. Here, we synthesise two polymorphs of porous calcium carbonate: calcite and vaterite with a wide range of specific surface areas. Then the equilibrium of cadmium adsorption is evaluated using adsorption isotherm models. Based on the Langmuir model with linear regression analysis, the maximum adsorptions of porous calcite and vaterite particles are 287.8 mg/g and 883.5 mg/g, respectively. The kinetics of cadmium chemisorption show clear differences between polymorphs. The calculated rate constant of the porous calcite particles using a pseudo-second-order reaction and Elovich models are two orders larger than that of porous vaterite particles. Although the adsorbed amount is superior for porous vaterite particles, porous calcite particles exhibit a faster reaction and relatively high adsorbed capacity for cadmium ions.
Collapse
Affiliation(s)
- Ryo Sasamoto
- Department of Applied Sciences, Muroran Institute of Technology, 050-8585, Hokkaido, Japan
| | - Yasuharu Kanda
- Department of Applied Sciences, Muroran Institute of Technology, 050-8585, Hokkaido, Japan
| | - Shinya Yamanaka
- Department of Applied Sciences, Muroran Institute of Technology, 050-8585, Hokkaido, Japan.
| |
Collapse
|
5
|
Snail Based Carbonated-Hydroxyapatite Material as Adsorbents for Water Iron (II). MATERIALS 2022; 15:ma15093253. [PMID: 35591586 PMCID: PMC9104755 DOI: 10.3390/ma15093253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 01/19/2023]
Abstract
Carbonated hydroxyapatite (CHAp) adsorbent material was prepared from Achatina achatina snail shells and phosphate-containing solution using a wet chemical deposition method. The CHAp adsorbent material was investigated to adsorb aqua Fe(II) complex; [Fe(H2O)6]2+ from simulated iron contaminated water for potential iron remediation application. The CHAp was characterized before and after adsorption using infrared (IR) and Raman spectroscopy. The IR and the Raman data revealed that the carbonate functional groups of the CHAp adsorbent material through asymmetric orientation in water bonded strongly to the aqua Fe(II) complex adsorbate. The adsorption behaviour of the adsorbate onto the CHAp adsorbent correlated well to pseudo-second-order kinetics model, non-linear Langmuir and Freundlich model at room temperature of a concentration (20–100 mg L−1) and contact time of 180 min. The Langmuir model estimated the maximum adsorption capacity to be 45.87 mg g−1 whereas Freundlich model indicated an S-type isotherm curvature which supported the spectroscopy revelation.
Collapse
|