1
|
Yao Y, Zuo H, Liu Y, Pang S, Lan L, Yao F, Wu Y, Liu Z. Efficient dye adsorption of mesoporous activated carbon from bamboo parenchyma cells by phosphoric acid activation. RSC Adv 2024; 14:12873-12882. [PMID: 38650691 PMCID: PMC11034359 DOI: 10.1039/d4ra01652a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
In order to solve the environmental damage caused by the discharge of dyes as industrial wastewater, the development of efficient and sustainable adsorbents is the key, while most of the previous studies on bamboo parenchyma cells have focused on their microstructural, functional and mechanical properties, and few of the properties in adsorption have been investigated. To evaluate the role of the unique microstructure of bamboo parenchyma cells on adsorption after carbonization and activation, PC-based activated carbon (PPAC) was fabricated by the phosphoric acid activation method and tested for adsorption using methylene blue (MB). The effect of mesoporous structure on MB adsorption was investigated in detail using PPAC-30C impregnated with phosphoric acid at a concentration of 30%. The results showed that the adsorption performance was influenced by single-factor experiments (e.g., pH, activated carbon dosing). The adsorption isotherms and kinetics could conform to the Langmuir model (R2 = 0.983-0.994) and pseudo-second-order kinetic model (R2 = 0.822-0.991) respectively, and the maximum MB adsorption capacity of adsorbent was 576 mg g-1. The adsorption mechanism of MB on PPAC-30C includes physical adsorption, electrostatic attraction, hydrogen bonding, and the π-π conjugation effect, which was dominated by physical adsorption. The results of this study show that PPAC has good application prospects for cationic dye removal.
Collapse
Affiliation(s)
- Yuxuan Yao
- School of Resources, Environment and Materials, Guangxi University Nanning 530000 Guangxi Zhuang Autonomous Region China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University Nanning 530004 China
| | - Haifeng Zuo
- School of Resources, Environment and Materials, Guangxi University Nanning 530000 Guangxi Zhuang Autonomous Region China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University Nanning 530004 China
| | - Yijing Liu
- School of Resources, Environment and Materials, Guangxi University Nanning 530000 Guangxi Zhuang Autonomous Region China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University Nanning 530004 China
| | - Shenghua Pang
- School of Resources, Environment and Materials, Guangxi University Nanning 530000 Guangxi Zhuang Autonomous Region China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University Nanning 530004 China
| | - Liuqian Lan
- School of Resources, Environment and Materials, Guangxi University Nanning 530000 Guangxi Zhuang Autonomous Region China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University Nanning 530004 China
| | - Futi Yao
- School of Resources, Environment and Materials, Guangxi University Nanning 530000 Guangxi Zhuang Autonomous Region China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University Nanning 530004 China
| | - Yongyi Wu
- School of Resources, Environment and Materials, Guangxi University Nanning 530000 Guangxi Zhuang Autonomous Region China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University Nanning 530004 China
| | - Zhigao Liu
- School of Resources, Environment and Materials, Guangxi University Nanning 530000 Guangxi Zhuang Autonomous Region China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University Nanning 530004 China
| |
Collapse
|
2
|
Batool F, Kanwal S, Kanwal H, Noreen S, Hodhod MS, Mustaqeem M, Sharif G, Naeem HK, Zahid J, Gaafar ARZ. Ecofriendly Synthesis of Magnetic Composites Loaded on Rice Husks for Acid Blue 25 Decontamination: Adsorption Kinetics, Thermodynamics, and Isotherms. Molecules 2023; 28:7124. [PMID: 37894603 PMCID: PMC10608902 DOI: 10.3390/molecules28207124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Addressing the growing need for methods for ecofriendly dye removal from aqueous media, this study explores the potential of rice husks coated with iron oxide (Fe2O3@RH composites) for efficient Acid Blue 25 decontamination. The adsorption potential of Acid Blue 25 is analyzed using raw rice husks and Fe2O3 nanoparticles in the literature, but their enhanced removal capacity by means of Fe2O3@RH composites is reported for the first time in this study. Fe2O3@RH composites were analyzed by using analytical techniques such as TGA, SEM, FTIR, BET, and the point of zero charge (pH(PZC)). The Acid Blue 25 adsorption experiment using Fe2O3@RH composites showed maximum adsorption at an initial concentration of Acid Blue 25 of 80 ppm, a contact time of 50 min, a temperature of 313 K, 0.25 g of Fe2O3@RH composites, and a pH of 2. The maximum percentage removal of Acid Blue 25 was found to be 91%. Various linear and nonlinear kinetic and isothermal models were used in this study to emphasize the importance and necessity of the adsorption process. Adsorption isotherms such as the Freundlich, Temkin, Langmuir, and Dubinin-Radushkevich (D-R) models were applied. The results showed that all the isotherms were best fitted on the data, except the linear form of the D-R isotherm. Adsorption kinetics such as the intraparticle kinetic model, the Elovich kinetic model, and the pseudo-first-order and pseudo-second-order models were applied. All the kinetic models were found to be best fitted on the data, except the PSO model (types II, III, and IV). Thermodynamic parameters such as ΔG° (KJ/mol), ΔH° (KJ/mol), and ΔS° (J/K*mol) were studied, and the reaction was found to be exothermic in nature with an increase in the entropy of the system, which supported the adsorption phenomenon. The current study contributes to a comprehensive understanding of the adsorption process and its underlying mechanisms through characterization, the optimization of the conditions, and the application of various models. The findings of the present study suggest practical applications of this method in wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Fozia Batool
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.K.); (H.K.); (S.N.); (M.M.); (J.Z.)
| | - Samia Kanwal
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.K.); (H.K.); (S.N.); (M.M.); (J.Z.)
- College of Biological Sciences and Medical Engineering, Donghua University, 2999 North Ren Min Road, Shanghai 201620, China
| | - Hafsa Kanwal
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.K.); (H.K.); (S.N.); (M.M.); (J.Z.)
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.K.); (H.K.); (S.N.); (M.M.); (J.Z.)
| | - Mohamed S. Hodhod
- Faculty of Biotechnology, October University for Modern Sciences & Arts, 6th October City 12566, Egypt;
| | - Muhammad Mustaqeem
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.K.); (H.K.); (S.N.); (M.M.); (J.Z.)
| | - Gulnaz Sharif
- Department of Chemistry, Government Graduate College for Women, Mandi Bahauddin 50400, Pakistan;
| | - Hafiza Komal Naeem
- Department of Botany, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Javeria Zahid
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.K.); (H.K.); (S.N.); (M.M.); (J.Z.)
| | - Abdel-Rhman Z. Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh P.O. Box 11451, Saudi Arabia
| |
Collapse
|
3
|
Li W, Zhang M, Peng L, Du J, Hua R, Zhao L. Selective recovery of Re(VII) by nucleobases functionalized cellulose microspheres from the simulated uranium ore leaching solution. Int J Biol Macromol 2023; 247:125831. [PMID: 37454998 DOI: 10.1016/j.ijbiomac.2023.125831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
From a practical standpoint, it is still challenging to develop adsorbents with high adsorption capacity and outstanding selectivity for rhenium in uranium ore leaching solution. In this study, in order to explore the structure-property relationship, four nucleobases (Adenine, Guanine, Hypoxanthine and Xanthine) were used as functionalization reagents to modify cellulose (MCC-g-GMA-A, MCC-g-GMA-G, MCC-g-GMA-H and MCC-g-GMA-X) via radiation method. The effect of the type of nucleobases on the adsorption performance was evaluated by batch and dynamic experiments. The order of maximum adsorption capacity was MCC-g-GMA-A (194.0 mg g-1) > MCC-g-GMA-G (123.4 mg g-1) > MCC-g-GMA-H (45.59 mg g-1) > MCC-g-GMA-X (23.43 mg g-1), which was associated with the category of nitrogen-functional groups. Different nitrogen-containing functional groups have different degrees of protonation, which leads to differences in the interaction of the adsorbent with Re(VII). Notably, the adsorbents were able to selectively capture trace Re(VII) from the simulated uranium ore leaching solution. The FT-IR, XPS analyses, DFT theoretical calculations exhibited that the adsorption mechanism of nucleobases functionalized cellulose microspheres and Re(VII) was electrostatic interaction. MCC-g-GMA-A and MCC-g-GMA-G exhibited excellent selectivity towards Re(VII), which are potential adsorbents for Re(VII) recovery in uranium ore leaching solutions.
Collapse
Affiliation(s)
- Wenkang Li
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Manman Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430040, China
| | - Lifang Peng
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jifu Du
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Rong Hua
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Long Zhao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
4
|
Chen J, Zhang M, Zhang Y, Zhang R, Zhang L, Wang R, Yang Y, Liu Y. Adsorption of hexavalent chromium, Rhodamine B and Congo red simultaneously in aquatic by zeolitic imidazolate framework coupling carbon nanotubes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87899-87912. [PMID: 37434052 DOI: 10.1007/s11356-023-28601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
Zeolitic imidazolate framework/carbon nanotube (ZIF-67/CNTs) was prepared by precipitation method. ZIF-67/CNTs maintained the characteristics of large specific surface area and high porosity of ZIFs, showing stable cubic structure. The adsorption capacities of ZIF-67/CNTs for Cong red (CR), Rhodamine B (RhB) and Cr(VI) were 36.82 mg/g, 1421.29 mg/g and 716.67 mg/g under the conditions of 2:1, 3:1 and 1:3 masses of ZIF-67 and CNTs, respectively. The optimum adsorption temperature of CR, RhB and Cr(VI) were 30 °C, and the removal rates at the adsorption equilibrium were 81.22%, 72.87% and 48.35%. The adsorption kinetic model of the three adsorbents on ZIF-67/CNTs was consistent with the quasi-second order reaction model, and the adsorption isotherms were more consistent with adsorption law of Langmuir. The adsorption mechanism for Cr(VI) was mainly electrostatic interaction, and the adsorption mechanism for azo dyes was the combination of physical and chemical adsorption. This study would provide theoretical basis for further developing metal organic framework (MOF) materials for environmental applications.
Collapse
Affiliation(s)
- Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China.
| | - Mingyu Zhang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Yijie Zhang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Ranran Zhang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Liwen Zhang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Renjun Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Yuewei Yang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| |
Collapse
|
5
|
Min Y, Woo MW, Dai R, Yang NQ, Dang X, Liu W, Chen H. The role of urea on the dissolution of starch in NaOH-urea aqueous solutions. SOFT MATTER 2023; 19:3496-3509. [PMID: 37140096 DOI: 10.1039/d2sm01659a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Potato starch can be dissolved in NaOH-urea aqueous solutions to form a stable and homogeneous mixture to initiate further modification. The mechanism for the formation of such a solution was investigated by examining the interactions between urea and starch, using rheological tests, 13C NMR, FTIR, and a novel Kamlet-Taft solvation parameter analysis. It was found that the optimized dissolution condition was in aqueous 10% w/w NaOH-14% w/w urea, under which 97.4% light transmission was achieved. This was due to dispersive forces between urea and starch without the presence of strong hydrogen bond based interactions. DSC results further showed that the subtle dissolving facilitation of urea might be attributed to the heat released during urea hydrate formation. Compared with conventional hydrothermal gelatinized starch, the starch-NaOH-urea aqueous dispersion exhibited better stability. This highlighted the role of urea in forming a 'bridge' to combine starch with water molecules. This reduces the tendency for starch aggregation via its hydrophobic components. Intrinsic viscosity and GPC analysis indicated that the degradation of starch molecules was significantly reduced. This work provides new insights into the role of urea in starch-NaOH-urea aqueous dispersion. This type of starch solvent formulation will have significant potential for further preparation of starch-based materials for various applications.
Collapse
Affiliation(s)
- Yan Min
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, China
| | - Meng Wai Woo
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Auckland, New Zealand
| | - Rui Dai
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, China
| | - Nima Qu Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, China
| | - Xugang Dang
- College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wentao Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, China
| | - Hui Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, China
| |
Collapse
|
6
|
Ren Z, Yang X, Zhang W, Zhao Z. Preparation, characterization and performance of a novel magnetic Fe-Zn activated carbon for efficient removal of dyes from wastewater. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Du J, Dong Z, Wen D, Yang X, Zhai M, Hua R, Zhao L. Selective recovery of rhenium from the simulating leaching solutions of uranium ore by amino guanidine functionalized microcrystalline cellulose microsphere. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Removal of methyl orange and acid fuschin from aqueous solution by guanidinium functionalized cellulose prepared by radiation grafting. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Baskar AV, Bolan N, Hoang SA, Sooriyakumar P, Kumar M, Singh L, Jasemizad T, Padhye LP, Singh G, Vinu A, Sarkar B, Kirkham MB, Rinklebe J, Wang S, Wang H, Balasubramanian R, Siddique KHM. Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153555. [PMID: 35104528 DOI: 10.1016/j.scitotenv.2022.153555] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 04/15/2023]
Abstract
Adsorption is the most widely adopted, effective, and reliable treatment process for the removal of inorganic and organic contaminants from wastewater. One of the major issues with the adsorption-treatment process for the removal of contaminants from wastewater streams is the recovery and sustainable management of spent adsorbents. This review focuses on the effectiveness of emerging adsorbents and how the spent adsorbents could be recovered, regenerated, and further managed through reuse or safe disposal. The critical analysis of both conventional and emerging adsorbents on organic and inorganic contaminants in wastewater systems are evaluated. The various recovery and regeneration techniques of spent adsorbents including magnetic separation, filtration, thermal desorption and decomposition, chemical desorption, supercritical fluid desorption, advanced oxidation process and microbial assisted adsorbent regeneration are discussed in detail. The current challenges for the recovery and regeneration of adsorbents and the methodologies used for solving those problems are covered. The spent adsorbents are managed through regeneration for reuse (such as soil amendment, capacitor, catalyst/catalyst support) or safe disposal involving incineration and landfilling. Sustainable management of spent adsorbents, including processes involved in the recovery and regeneration of adsorbents for reuse, is examined in the context of resource recovery and circular economy. Finally, the review ends with the current drawbacks in the recovery and management of the spent adsorbents and the future directions for the economic and environmental feasibility of the system for industrial-scale application.
Collapse
Affiliation(s)
- Arun V Baskar
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Son A Hoang
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Division of Urban Infrastructural Engineering, Mientrung University of Civil Engineering, Phu Yen 56000, Viet Nam
| | - Prasanthi Sooriyakumar
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Gurwinder Singh
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ajayan Vinu
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Jörg Rinklebe
- University of Wuppertal, Germany, Faculty of Architecture und Civil Engineering, Institute of Soil Engineering, Waste- and Water Science, Laboratory of Soil- and Groundwater-Management, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea.
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, People's Republic of China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | | | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
10
|
Zhu Y, Cui Y, Shan Z, Dai R, Shi L, Chen H. Fabrication and characterization of a multi-functional and environmentally-friendly starch/organo-bentonite composite liquid dust suppressant. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.06.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Chicken feet yellow membrane/over-oxidized carbon paste electrodes: A novel electrochemical platform for determination of vitamin C. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Chen T, Zhao Y, Sang YN, Tang M, Hu GW, Han XB, Gao J, Ma R. Facile synthesis of magnetic CS-g-SPSS microspheres via electron beam radiation for efficient removal of methylene blue. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|