1
|
Kalibek MR, Ospanova AD, Suleimenova B, Soltan R, Orazbek T, Makhmet AM, Rafikova KS, Nuraje N. Solid-state hydrogen storage materials. DISCOVER NANO 2024; 19:195. [PMID: 39592515 PMCID: PMC11599665 DOI: 10.1186/s11671-024-04137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024]
Abstract
The increasing global emphasis on sustainable energy alternatives, driven by concerns about climate change, has resulted in a deeper examination of hydrogen as a viable and ecologically safe energy carrier. The review paper analyzes the recent advancements achieved in materials used for storing hydrogen in solid-state, focusing particularly on the improvements made in both physical and chemical storage techniques. Metal-organic frameworks and covalent-organic frameworks are characterized by their porous structures and large surface areas, making them appropriate for physical adsorption. Additionally, the conversation centers on metal hydrides and complex hydrides because of their ability to form chemical bonds (absorption) with hydrogen, leading to substantial storage capacities. The combination of materials that adsorb and absorb hydrogen could enhance the overall efficiency. Moreover, the review discusses recent research, analyzes key factors that influence performance, and discusses the difficulties and strategies for enhancing material efficiency and cost-effectiveness. The provided observations emphasize the critical significance of improved materials in facilitating the transition towards a hydrogen-based economy. Furthermore, it is crucial to highlight the necessity for additional study and development in this vital field.
Collapse
Affiliation(s)
- M R Kalibek
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Science, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000, Kazakhstan
| | - A D Ospanova
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Science, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000, Kazakhstan
| | - B Suleimenova
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Science, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000, Kazakhstan
| | - R Soltan
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - T Orazbek
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - A M Makhmet
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Kh S Rafikova
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - N Nuraje
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan.
- Department of Chemical and Materials Engineering, School of Engineering and Digital Science, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000, Kazakhstan.
| |
Collapse
|
2
|
Manzoor S, Ali S, Mansha M, Sadaqat M, Ashiq MN, Tahir MN, Khan SA. Exploring Nanomaterials for Hydrogen Storage: Advances, Challenges, and Perspectives. Chem Asian J 2024; 19:e202400365. [PMID: 38705846 DOI: 10.1002/asia.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Hydrogen energy heralded for its environmentally friendly, renewable, efficient, and cost-effective attributes, stands poised as the primary alternative to fossil fuels in the future. Despite its great potential, the low volumetric density presents a formidable challenge in hydrogen storage. Addressing this challenge necessitates exploring effective storage techniques for a sustainable hydrogen economy. Solid-state hydrogen storage in nanomaterials (physically or chemically) holds promise for achieving large-scale hydrogen storage applications. Such approaches offer benefits, including safety, compactness, lightness, reversibility, and efficient generation of pure hydrogen fuel under mild conditions. This article presents solid-state nanomaterials, specifically nanoporous carbons (activated carbon, carbon fibers), metal-organic frameworks, covalently connected frameworks, nanoporous organic polymers, and nanoscale metal hydrides. Furthermore, new developments in hydrogen fuel cell technology for stationary and mobile applications have been demonstrated. The review outlines significant advancements thus far, identifies key barriers to practical implementation, and presents a perspective for future sustainable energy research. It concludes with recommendations to enhance hydrogen storage performance for cost-effective and long-lasting utilization.
Collapse
Affiliation(s)
- Sumaira Manzoor
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Shahid Ali
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Maira Sadaqat
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Naeem Ashiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Nawaz Tahir
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Bhaduri B, Anand Omar R, Verma N. Synthesis of Internally Carbon-Sourced Carbon Nanofiber Forming Ni-Graphitic Carbon Nitride. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
4
|
Sharifian M, Kern W, Riess G. A Bird's-Eye View on Polymer-Based Hydrogen Carriers for Mobile Applications. Polymers (Basel) 2022; 14:4512. [PMID: 36365506 PMCID: PMC9654451 DOI: 10.3390/polym14214512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 10/29/2023] Open
Abstract
Globally, reducing CO2 emissions is an urgent priority. The hydrogen economy is a system that offers long-term solutions for a secure energy future and the CO2 crisis. From hydrogen production to consumption, storing systems are the foundation of a viable hydrogen economy. Each step has been the topic of intense research for decades; however, the development of a viable, safe, and efficient strategy for the storage of hydrogen remains the most challenging one. Storing hydrogen in polymer-based carriers can realize a more compact and much safer approach that does not require high pressure and cryogenic temperature, with the potential to reach the targets determined by the United States Department of Energy. This review highlights an outline of the major polymeric material groups that are capable of storing and releasing hydrogen reversibly. According to the hydrogen storage results, there is no optimal hydrogen storage system for all stationary and automotive applications so far. Additionally, a comparison is made between different polymeric carriers and relevant solid-state hydrogen carriers to better understand the amount of hydrogen that can be stored and released realistically.
Collapse
Affiliation(s)
- Mohammadhossein Sharifian
- Montanuniversität Leoben, Chair in Chemistry of Polymeric Materials, Otto-Glöckel-Strasse 2, A-8700 Leoben, Austria
| | | | | |
Collapse
|
5
|
Baum Z, Diaz LL, Konovalova T, Zhou QA. Materials Research Directions Toward a Green Hydrogen Economy: A Review. ACS OMEGA 2022; 7:32908-32935. [PMID: 36157740 PMCID: PMC9494439 DOI: 10.1021/acsomega.2c03996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 05/06/2023]
Abstract
A constellation of technologies has been researched with an eye toward enabling a hydrogen economy. Within the research fields of hydrogen production, storage, and utilization in fuel cells, various classes of materials have been developed that target higher efficiencies and utility. This Review examines recent progress in these research fields from the years 2011-2021, exploring the most commonly occurring concepts and the materials directions important to each field. Particular attention has been given to catalyst materials that enable the green production of hydrogen from water, chemical and physical storage systems, and materials used in technical capacities within fuel cells. The quantification of publication and materials trends provides a picture of the current state of development within each node of the hydrogen economy.
Collapse
|
6
|
Chen X, Niu K, Xue Z, Liu X, Liu B, Zhang B, Zeng H, Lv W, Zhang Y, Wu Y. Ultrafine platinum nanoparticles supported on N,S-codoped porous carbon nanofibers as efficient multifunctional materials for noticeable oxygen reduction reaction and water splitting performance. NANOSCALE ADVANCES 2022; 4:1639-1648. [PMID: 36134368 PMCID: PMC9417137 DOI: 10.1039/d2na00014h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/11/2022] [Indexed: 05/30/2023]
Abstract
The design of highly active, stable and durable platinum-based electrocatalysts towards the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and hydrogen adsorption has a high and urgent demand in fuel cells, water splitting and hydrogen storage. Herein, ultrafine platinum nanoparticles (Pt NPs) supported on N,S-codoped porous carbon nanofibers (Pt-N,S-pCNFs) hybrids were prepared through the electrospinning method coupled with hydrothermal and carbonation processes. The ultrafine Pt NPs are sufficiently dispersed and loaded on pCNFs and codoped with N and S, which can improve oxygen adsorption, afford more active sites, and greatly enhance electron mobility. The Pt-N,S-pCNFs hybrid achieves excellent activity and stability for ORR with ∼70 mV positive shift of onset potential compared to the commercial Pt/C-20 wt% electrocatalyst. The long-term catalytic durability with 89.5% current retention after a 10 000 s test indicates its remarkable ORR behavior. Pt-N,S-pCNFs also exhibits excellent HER and OER performance, and can be used as an efficient catalyst for water splitting. In addition, Pt-N,S-pCNFs exhibits an excellent hydrogen storage capacity of 0.76 wt% at 20 °C and 10 MPa. This work provides novel design strategies for the development of multifunctional materials as high-performance ORR catalysts, water splitting electrocatalysts and hydrogen storage materials.
Collapse
Affiliation(s)
- Xiaohong Chen
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Kai Niu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd. Minhang District Shanghai 200240 China
| | - Zhiyong Xue
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Xundao Liu
- School of Materials Science and Engineering, University of Jinan Jinan 250022 China
| | - Bogu Liu
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Bao Zhang
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Hong Zeng
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Wei Lv
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd. Minhang District Shanghai 200240 China
| | - Ying Wu
- Institute of Advanced Materials, North China Electric Power University Beijing
| |
Collapse
|
7
|
Xiong J, Chen X, Zhang Y, Lu Y, Liu X, Zheng Y, Zhang Y, Lin J. Fe/Co/N-C/graphene derived from Fe/ZIF-67/graphene oxide three dimensional frameworks as a remarkably efficient and stable catalyst for the oxygen reduction reaction. RSC Adv 2022; 12:2425-2435. [PMID: 35425220 PMCID: PMC8979202 DOI: 10.1039/d1ra08817c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
The development of non-noble metal catalysts with high-performance, long stability and low-cost is of great importance for fuel cells, to promote the oxygen reduction reaction (ORR). Herein, Fe/Co/N-C/graphene composites were easily prepared by using Fe/ZIF-67 loaded on graphene oxide (GO). The Fe/Co/porous carbon nanoparticles were uniformly dispersed on graphene with high specific surface area and large porosity, which endow high nitrogen doping and many more active sites with better ORR performance than the commercial 20 wt% Pt/C. Therefore, Fe/Co/N-C/graphene composites exhibited excellent ORR activity in alkaline media, with higher initial potential (0.91 V) and four electron process. They also showed remarkable long-term catalytic stability with 96.5% current retention after 12 000 s, and outstanding methanol resistance, compared with that of 20 wt% Pt/C catalysts. This work provides an effective strategy for the preparation of non-noble metal-based catalysts, which could have significant potential applications, such as in lithium-air batteries and water-splitting devices.
Collapse
Affiliation(s)
- Junchao Xiong
- Institute of Advanced Materials, North China Electric Power University Beijing 102206 China
- School of New Energy, North China Electric Power University Beijing 102206 China
| | - Xiaohong Chen
- Institute of Advanced Materials, North China Electric Power University Beijing 102206 China
| | - Yupan Zhang
- Institute of Advanced Materials, North China Electric Power University Beijing 102206 China
| | - Yue Lu
- School of Materials Science and Engineering, University of Jinan Jinan 250022 China
| | - Xundao Liu
- School of Materials Science and Engineering, University of Jinan Jinan 250022 China
| | - Yafei Zheng
- Institute of Advanced Materials, North China Electric Power University Beijing 102206 China
| | - Yongming Zhang
- Institute of Advanced Materials, North China Electric Power University Beijing 102206 China
| | - Jun Lin
- School of New Energy, North China Electric Power University Beijing 102206 China
| |
Collapse
|
8
|
Chen X, Xue Z, Zheng Y, Liu X, Zhang Y. Uniformly dispersed platinum nanoparticles over nitrogen-doped reduced graphene oxide as an efficient electrocatalyst for the oxygen reduction reaction. RSC Adv 2021; 11:34125-34131. [PMID: 35497304 PMCID: PMC9042399 DOI: 10.1039/d1ra04857k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
Oxygen reduction reaction (ORR) with efficient activity and stability is significant for fuel cells. Herein, platinum (Pt) nanoparticles dispersed on nitrogen-doped reduced graphene oxide (N-rGO) were prepared by a hydrothermal and carbonized approach for the electrocatalysis of ORR. Polyvinylpyrrolidone plays a significant role in the reduction and dispersion of platinum particles (about 2 nm). The obtained Pt–N-rGO hybrids exhibited superior activity with an electron transfer number of ∼4.0, onset potential 0.90 eV of ORR, good stability and methanol tolerance in alkaline media. These results reveal the interactions between Pt–N-rGO and oxygen molecules, which may represent an oxygen modified growth in catalyst preparation. The excellent electrocatalysis may lead to the decreased consumption of expensive Pt and open up new opportunities for applications in lithium air batteries. We developed a facile, yet general approach to prepare ultrafine Pt nanoparticles loaded on N-doped reduced graphene (Pt–N-rGO) composites, which showed excellent oxygen reduction reaction performance.![]()
Collapse
Affiliation(s)
- Xiaohong Chen
- Institute for Advanced Materials, North China Electric Power University, Beijing, China
| | - Zhiyong Xue
- Institute for Advanced Materials, North China Electric Power University, Beijing, China
| | - Yafei Zheng
- Institute for Advanced Materials, North China Electric Power University, Beijing, China
| | - Xundao Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, China
| |
Collapse
|