1
|
Moonnee I, Ahmad MS, Inomata Y, Kiatkittipong W, Kida T. Graphene oxide-based materials as proton-conducting membranes for electrochemical applications. NANOSCALE 2024; 16:20791-20810. [PMID: 39397397 DOI: 10.1039/d4nr02992e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The rapid advancements of graphene oxide (GO)-based membranes necessitate the understanding of their properties and application potential. Generally, proton (H+)-conducting membranes, including GO-based ones, are crucial components in various energy-relevant devices, significantly determining the transport process, selectivity, and overall efficiency of these devices. Particularly, GO-based membranes exhibit great potential in electrochemical applications owing to their remarkable conductivity and ease of undergoing further modifications. This review is aimed at highlighting recent functionalization strategies for GO with diverse substrates. It is also aimed at emphasizing how these modifications can enhance the electrochemical performances of GO-based membranes. Notably, key aspects, such as the enhanced H+-transfer kinetics, improved conductivity, functionalities, and optimization, of these membranes for specific applications are discussed. Additionally, the existing challenges and future directions for the field of functionalized GO are addressed to achieve precise control of the functionalities of these membranes as well as advance next-generation electrochemical devices.
Collapse
Affiliation(s)
- Itthipon Moonnee
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand.
- Graduate School of Science and Technology, Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan
| | - Muhammad Sohail Ahmad
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, Kumamoto 860-8655, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan.
| | - Yusuke Inomata
- Graduate School of Science and Technology, Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand.
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan.
| | - Tetsuya Kida
- Graduate School of Science and Technology, Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, Kumamoto 860-8655, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan.
| |
Collapse
|
2
|
Imran M, Singh VV, Garg P, Mazumder A, Pandey LK, Sharma PK, Acharya J, Ganesan K. In-situ detoxification of schedule-I chemical warfare agents utilizing Zr(OH) 4@W-ACF functional material for the development of next generation NBC protective gears. Sci Rep 2021; 11:24421. [PMID: 34952902 PMCID: PMC8709862 DOI: 10.1038/s41598-021-03786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022] Open
Abstract
Chemical warfare agents (CWAs) have become a pivotal concern for the global community and spurred a wide spectrum of research for the development of new generation protective materials. Herein, a highly effective self-detoxifying filter consisting of in-situ immobilized Zirconium hydroxide [Zr(OH)4] over woven activated carbon fabric [Zr(OH)4@W-ACF] is presented for the removal of CWAs. It was prepared to harness the synergistic effect of high surface area of W-ACF, leads to high dispersion of CWAs and high phosphilicity and reactivity of [Zr(OH)4]. The synthesized materials were characterized by ATR-FTIR, EDX, SEM, TEM, XPS, TGA, and BET surface area analyzer. The kinetics of in-situ degradation of CWAs over Zr(OH)4@W-ACF were studied and found to be following the first-order reaction kinetics. The rate constant was found to be 0.244 min-1 and 2.31 × 10-2 min-1 for sarin and soman, respectively over Zr(OH)4@W-ACF. The potential practical applicability of this work was established by fabricating Zr(OH)4@W-ACF as reactive adsorbent layer for protective suit, and found to be meeting the specified criteria in terms of air permeability, tearing strength and nerve agent permeation as per TOP-08-2-501A:2013 and IS-17380:2020. The degradation products of CWAs were analyzed with NMR and GC-MS. The combined properties of dual functional textile with reactive material are expected to open up new exciting avenues in the field of CWAs protective clothing and thus find diverse application in defence and environmental sector.
Collapse
Affiliation(s)
- Mohammad Imran
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Virendra V Singh
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India.
| | - Prabhat Garg
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Avik Mazumder
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Lokesh K Pandey
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Pushpendra K Sharma
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Jyotiranjan Acharya
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Kumaran Ganesan
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| |
Collapse
|
3
|
Xie Y. Enhancement effect of silver nanoparticles decorated titania nanotube array acting as active SERS substrate. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1984533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yibing Xie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Xie Y, Mu Y. Interface Mo-N coordination bonding MoSxNy@Polyaniline for stable structured supercapacitor electrode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138953] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Nazir G, Rehman A, Park SJ. Role of heteroatoms (nitrogen and sulfur)-dual doped corn-starch based porous carbons for selective CO2 adsorption and separation. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101641] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Xie Y. Photoelectrochemical performance of tubewall‐separated titanium dioxide nanotube array photoelectrode. ASIA-PAC J CHEM ENG 2021. [DOI: 10.1002/apj.2688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yibing Xie
- School of Chemistry and Chemical Engineering Southeast University Nanjing China
| |
Collapse
|
7
|
Boosting supercapacitive performance of flexible carbon via surface engineering. J Colloid Interface Sci 2021; 602:636-645. [PMID: 34147754 DOI: 10.1016/j.jcis.2021.06.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/29/2021] [Accepted: 06/06/2021] [Indexed: 11/20/2022]
Abstract
The relatively low specific capacitance of flexible carbons hinders their practical application for fabricating high-performance flexible supercapacitors. In this work, a surface engineering method is proposed to boost the supercapacitive performance of the flexible carbon. In this method, a flexible carbon was fabricated from carbon felt via co-activation with potassium argininate and potassium hydroxide (KOH) as activators, and the resulting material is abbreviated as AKCF. Unlike traditional KOH activation processes, the addition of potassium argininate can produce a micro-graphitized carbon layer to be the outer layer of AKCF fibers for achieving better electronic transfer. Due to the improved conductivity and lower charge transfer resistance endowed by a thin micro-graphitized carbon layer, the capacitance of the AKCF-0.1 (0.1 M arginine was used) electrode obtained by the co-activation process is elevated to a 1.8-fold higher value of 403 C·g-1 (2583 mC·cm-2) relative to the AKCF-0 (0 M arginine was used) electrode prepared by KOH activation alone (222 C·g-1 or 1369 mC·cm-2). Moreover, this AKCF-0.1 electrode also displays satisfactory rate capability (66% capacitance retention after a 20-fold current increase) and highly stable cycling performance (no capacitance decline after 20,000 cycles). In addition, the asymmetric supercapacitors constructed with this AKCF-0.1 electrode as the flexible negative electrode expresses high energy densities of 68.4 Wh·kg-1 and 0.139 mWh·cm-2 in aqueous and gel electrolytes, respectively.
Collapse
|
8
|
Chen Y, Hao H, Lu X, Li W, He G, Shen W, Shearing PR, Brett DJL. Porous 3D graphene aerogel co-doped with nitrogen and sulfur for high-performance supercapacitors. NANOTECHNOLOGY 2021; 32:195405. [PMID: 33494075 DOI: 10.1088/1361-6528/abdf8d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heteroatom-doped carbon materials with a high specific area, a well-defined porous structure is important to high-performance supercapacitors (SCs). Here, S and N co-doped three-dimensional porous graphene aerogel (NS-3DPGHs) have been synthesized in a facile and efficient self-assembly process with thiourea acting as the reducing and doping agent solution. Operating as a SC electrode, fabricated co-doping graphene, i.e. the sample of NS-3DPGH-150 exhibits the highest specific capacitance of 412.9 F g-1 under 0.5 A g-1 and prominent cycle stabilization with 96.4% capacitance retention in the back of 10 000 cycles. Furthermore, based on NS-3DPGH-150, the symmetrical supercapacitor as-prepared in 6 M KOH displays a superior energy density of 12.9 Wh kg-1 under the power density of 249 W kg-1. Hence, NS-3DPGHs could be considered as an excellent candidate for SCs.
Collapse
Affiliation(s)
- Yinan Chen
- College of Material Engineering, Shanghai University of Engineering Science 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Huilian Hao
- College of Material Engineering, Shanghai University of Engineering Science 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Xuekun Lu
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Wenyao Li
- College of Material Engineering, Shanghai University of Engineering Science 333 Long Teng Road, Shanghai 201620, People's Republic of China
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Guanjie He
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, LN6 7DL, United Kingdom
| | - Wenzhong Shen
- Institute of Solar Energy, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, People's Republic of China
| | - Paul R Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Dan J L Brett
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| |
Collapse
|
9
|
Xie Y. Electrochemical properties of sodium manganese oxide/nickel foam supercapacitor electrode material. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1897617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yibing Xie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Xie Y. Synthesis and electrochemical performance of an electroactive nitrogen-doping SnO2 nanoarray supported on carbon fiber. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/1747519821994252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An electroactive nitrogen-doping tin dioxide nanorod array (N-SnO2 NRA) is designed as an effective energy-storage electrode material for supercapacitor applications. N-SnO2 supported on a carbon fiber substrate is prepared using SnCl4 as a precursor through hydrolysis, hydrothermal growth, and an NH3-nitriding process. Electroactive N-SnO2 is formed by an N-doping reaction between Sn(OH)4 and NH3, revealing a high nitrogen-doping level of 12.5% in N-SnO2. N-SnO2/carbon fiber reveals a lower ohmic resistance and charge transfer resistance than SnO2/carbon fiber, which is consistent with its higher current response and lower voltage drop in electrochemical measurements. N-SnO2 NRA has an independent nanoarray structure and a small side length of a quadrangular nanorod, contributing to a more accessible interspace, reactive sites, and feasible electrolyte ion diffusion. The N-SnO2/carbon fiber NRA electrode shows higher specific capacitance (105.4 F g−1 at 0.5 A g−1) and rate capacitance retention (45.0% from 0.5 to 5 A g−1) than a SnO2/carbon fiber NRA electrode (58.6 F g−1, 38.4%). Significantly, the cycling capacitance retention after 2000 cycles increases from 78.1% of SnO2/carbon fiber to 98.8% of N-SnO2/carbon fiber, presenting a superior electrochemical cycling stability. The N-SnO2 supercapacitor maintains stable power working at an output voltage of 1.6 V. The specific capacitance decreases from 75.2 to 55.1 F g−1 when the current density increases from 1 to 10 A g−1. The corresponding energy density decreases from 24.23 to 9.81 Wh kg−1, presenting a reasonable rate capability. So, the prepared N-SnO2 nanorod array demonstrates superior capacitance performance for energy-storage applications.
Collapse
Affiliation(s)
- Yibing Xie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Ma J, Xie Y. Electrochemical performance of the homologous molybdenum( vi) redox-active gel polymer electrolyte system. NEW J CHEM 2021. [DOI: 10.1039/d0nj05001f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PVA–H3PO4–Na2MoO4 and PVA–H3PO4–PMo12 are assembled into a single solid-state supercapacitor to improve the specific capacitance. Homologous molybdenum (vi) of PMo12 and Na2MoO4 provides synergistic effect to improve faradaic capacitance performance.
Collapse
Affiliation(s)
- Jiayi Ma
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Yibing Xie
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|
12
|
Xie Y. Fabrication of Highly Ordered Ag/TiO2 Nanopore Array as a Self-Cleaning and Recycling SERS Substrate. Aust J Chem 2021. [DOI: 10.1071/ch21142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Silver nanoparticles deposited on a titania nanopore array (Ag/TiO2 NPA) has been designed as a surface-enhanced Raman scattering (SERS) substrate for sensitive and recycling application of organic molecule detection. A TiO2 NPA was fabricated by a surface oxidization reaction of a titanium sheet by a double anodization process. A Ag/TiO2 NPA was then formed by depositing silver nanoparticles onto the TiO2 NPA by a cycling chemical reduction deposition process. The Ag/TiO2 NPA has a uniform mono-layer dispersion of Ag nanoparticles with a size of 30–50 nm on TiO2 nanopores with a diameter of 100–110 nm. The Ag/TiO2 NPA SERS substrate could facilitate interfacial adsorption of Rhodamine 6G (R6G), which achieves a sensitive detection limit of 10−8 M R6G through SERS spectrum measurement. The Ag/TiO2 NPA SERS substrate achieves an analytical enhancement factor value of 2.6 × 105. The Ag/TiO2 NRA could promote the UV light-excited photocatalytic degradation reaction of R6G adsorbed on its surface which gives rise to a refreshed Ag/TiO2 NRA under UV irradiation for 60 min and accordingly behave as a self-cleaning and recycling SERS substrate. The Ag/TiO2 NPA exhibits a much higher R6G degradation reaction rate constant (0.05764 min−1) than the TiO2 NPA (0.02600 min−1), indicating its superior photocatalytic activity and self-cleaning activity. The refreshed Ag/TiO2 NPA was able to be recycled for the Raman detection of R6G, maintaining a high stability, reproducibility, and cyclability. The highly ordered Ag/TiO2 NPA with well controlled Ag nanoparticle dispersion and TiO2 nanopore shape could act as a suitable SERS substrate for recycling and self-cleaning application for stable and sensitive molecule detection.
Collapse
|
13
|
Xie Y. Fabrication and charge storage capacitance of PPY/TiO2/PPY jacket nanotube array. JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2020-0232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A PPY/TiO2/PPY jacket nanotube array was fabricated by coating PPY layer on the external and internal surface of a tube wall-separated TiO2 nanotube array. It shows coaxial triple-walled nanotube structure with two PPY nanotube layers sandwiching one TiO2 nanotube layer. PPY/TiO2/PPY reveals much higher current response than TiO2. The theoretical calculation indicates PPY/TiO2/PPY reveals higher density of states and lower band gap, accordingly presenting higher conductivity and electroactivity, which is consistent with the experimental result of a higher current response. The electroactivity is highly enhanced in H2SO4 rather than Na2SO4 electrolyte due to feasible pronation process of PPY in an acidic solution. PPY/TiO2/PPY could conduct the redox reaction in H2SO4 electrolyte which involves the reversible protonation/deprotonation and HSO4
− doping/dedoping process and accordingly contributes to Faradaic pseudocapacitance. The specific capacitance is highly enhanced from 1.7 mF cm−2 of TiO2 to 123.4 mF cm−2 of PPY/TiO2/PPY at 0.1 mA cm−2 in H2SO4 electrolyte. The capacitance also declines from 123.4 to 31.7 mF cm−2 when the current density increases from 0.1 to 1 mA cm−2, presenting the rate capacitance retention of 26.7% due to the semiconductivity of TiO2. A PPY/TiO2/PPY jacket nanotube with high charge storage capacitance is regarded as a promising supercapacitor electrode material.
Collapse
Affiliation(s)
- Yibing Xie
- School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189 , China
| |
Collapse
|
14
|
Xie Y. Fabrication and electrochemical properties of flow-through polypyrrole and polypyrrole/polypyrrole nanoarrays. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01411-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|