1
|
Elkholy AEA, Poon K, Singh G, Giansiracusa M, Callaghan KL, Boskovic C, Ellis AV, Kingshott P. Electrosynthesis of Silane-Modified Magnetic Nanoparticles for Efficient Lead Ion Removal. CHEMSUSCHEM 2025:e202402098. [PMID: 39824771 DOI: 10.1002/cssc.202402098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/25/2024] [Accepted: 01/15/2025] [Indexed: 01/20/2025]
Abstract
The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase. IONPs were characterized using various techniques including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometry (VSM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). A novel electrochemical method was developed for the silanization of IONPs using tetraethoxysilane (TEOS), (3-mercaptopropyl)trimethoxysilane (MPTMS) and (3-aminopropyl)triethoxysilane (APTES). The resulting silane-modified IONPs were evaluated for the magnetic removal of Pb2+ ions, with TEOS-modified IONPs demonstrating superior performance. This material exhibited a high adsorption capacity of 519 mg/g at a Pb2+ ion concentration of 300 ppm, and high removal efficiency across a range of Pb2+ ion concentrations, attributed to its Fe2O3@SiO2 core-shell structure. This study highlights the potential of the electrochemical synthesis and silanization of nanoparticles for heavy metal remediation in water.
Collapse
Affiliation(s)
- Ayman E Ahmed Elkholy
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, 3122, VIC, Australia
| | - Kingsley Poon
- School of Biomedical Engineering and Sydney Nano Institute, The University of Sydney, Sydney, 2006, NSW, Australia
| | - Gurvinder Singh
- School of Biomedical Engineering and Sydney Nano Institute, The University of Sydney, Sydney, 2006, NSW, Australia
| | - Marcus Giansiracusa
- School of Chemistry, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Kimberley L Callaghan
- Department of Chemical Engineering, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Colette Boskovic
- School of Chemistry, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, 3122, VIC, Australia
- Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, 3122, VIC, Australia
| |
Collapse
|
2
|
Dai X, Dai Y, Zheng Y, Lv Y. Magnetic nanoparticles and possible synergies with cold atmospheric plasma for cancer treatment. RSC Adv 2024; 14:29039-29051. [PMID: 39282063 PMCID: PMC11391930 DOI: 10.1039/d4ra03837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
The biomedical applications of magnetic nanoparticles (MNPs) have gained increasing attention due to their unique biological, chemical, and magnetic properties such as biocompatibility, chemical stability, and high magnetic susceptibility. However, several critical issues still remain that have significantly halted the clinical translation of these nanomaterials such as the relatively low therapeutic efficacy, hyperthermia resistance, and biosafety concerns. To identify innovative approaches possibly creating synergies with MNPs to resolve or mitigate these problems, we delineated the anti-cancer properties of MNPs and their existing onco-therapeutic portfolios, based on which we proposed cold atmospheric plasma (CAP) to be a possible synergizer of MNPs by enhancing free radical generation, reducing hyperthermia resistance, preventing MNP aggregation, and functioning as an innovative magnetic and light source for magnetothermal- and photo-therapies. Our insights on the possible facilitating role of CAP in translating MNPs for biomedical use may inspire fresh research directions that, once actualized, gain mutual benefits from both.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 PR China
| | - Yilin Dai
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 PR China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 PR China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 PR China
| |
Collapse
|
3
|
Huang G, Ma J, Li J, Yan L. Study on the interaction between aflatoxin M1 and DNA and its application in the removal of aflatoxin M1. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Patiño-Ruiz D, Meramo-Hurtado SI, González-Delgado ÁD, Herrera A. Environmental Sustainability Evaluation of Iron Oxide Nanoparticles Synthesized via Green Synthesis and the Coprecipitation Method: A Comparative Life Cycle Assessment Study. ACS OMEGA 2021; 6:12410-12423. [PMID: 34056392 PMCID: PMC8154134 DOI: 10.1021/acsomega.0c05246] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/15/2021] [Indexed: 05/24/2023]
Abstract
Green synthesis, based on green chemistry, is replacing the traditional methods, aiming to contribute with an enhanced environmental sustainability, which can be achieved using nontoxic compounds from biological resources, such as natural extracts from plants. In this study, the life cycle assessment (LCA) of iron oxide nanoparticles prepared through the green synthesis and the coprecipitation method is reported by following a cradle-to-gate approach. The LCA allowed quantifying and normalized the environmental impacts produced by the green synthesis (1.0 × 10-9), which used a Cymbopogon citratus (C. citratus) extract and sodium carbonate (Na2CO3). The impacts were also determined for the coprecipitation method (1.4 × 10-8) using the iron(II) salt precursor and sodium hydroxide (NaOH). The contribution of C. citratus extract and Na2CO3 as the precursor and pH-stabilizing agents, respectively, was compared regarding the iron(II) and NaOH compounds. Environmental sustainability was evaluated in human toxicity, ecosystem quality, and resource depletion. The major environmental contribution was found in the marine aquatic ecotoxicity (7.6 × 10-10 and 1.22 × 10-8 for green synthesis and the coprecipitation method) due to the highest values for ethanol (3.5 × 10-10) and electricity (1.4 × 10-8) usage since fossil fuels and wastewater are involved in their production. The C. citratus extract (2.5 × 10-12) presented a better environmental performance, whereas Na2CO3 (4.3 × 10-11) showed a slight increase contribution compared to NaOH (4.1 × 10-11). This is related to their fabrication, involving toxic compounds, land occupation, and excessive water usage. In general, the total environmental impacts are lower for the green synthesis, suggesting the implementation of environmentally friendlier compounds based on natural sources for the production of nanomaterials.
Collapse
Affiliation(s)
- David
Alfonso Patiño-Ruiz
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, Cartagena 130010, Colombia
| | - Samir Isaac Meramo-Hurtado
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, Cartagena 130010, Colombia
- Departamento
de Ingeniería Químmica, Grupo de Investigación
Tecnológico Ontare, Universidad EAN, Bogotá 111311, Colombia
| | - Ángel Dario González-Delgado
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, Cartagena 130010, Colombia
- Programa
de Ingeniería Química, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, Cartagena 130010, Colombia
| | - Adriana Herrera
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, Cartagena 130010, Colombia
- Programa
de Ingeniería Química, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, Cartagena 130010, Colombia
| |
Collapse
|
5
|
Patiño-Ruiz D, Meramo-Hurtado SI, Mehrvar M, Rehmann L, Quiñones-Bolaños E, González-Delgado ÁD, Herrera A. Environmental and Exergetic Analysis of Large-Scale Production of Citric Acid-Coated Magnetite Nanoparticles via Computer-Aided Process Engineering Tools. ACS OMEGA 2021; 6:3644-3658. [PMID: 33585745 PMCID: PMC7876683 DOI: 10.1021/acsomega.0c05184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Considering that functional magnetite (Fe3O4) nanoparticles with exceptional physicochemical properties can be highly applicable in different fields, scaling-up strategies are becoming important for their large-scale production. This study reports simulations of scaled-up production of citric acid-coated magnetite nanoparticles (Fe3O4-cit), aiming to evaluate the potential environmental impacts (PEIs) and the exergetic efficiency. The simulations were performed using the waste reduction algorithm and the Aspen Plus software. PEI and energy/exergy performance are calculated and quantified. The inlet and outlet streams are estimated by expanding the mass and energy flow, setting operating parameters of processing units, and defining a thermodynamic model for properties estimation. The high environmental performance of the production process is attributed to the low outlet rate of PEI compared to the inlet rate. The product streams generate low PEI contribution (-3.2 × 103 PEI/y) because of the generation of environmentally friendlier substances. The highest results in human toxicity potential (3.2 × 103 PEI/y), terrestrial toxicity potential (3.2 × 103 PEI/y), and photochemical oxidation potential (2.6 × 104 PEI/y) are attributed to the ethanol within the waste streams. The energy source contribution is considerably low with 27 PEI/y in the acidification potential ascribed to the elevated levels of hydrogen ions into the atmosphere. The global exergy of 1.38% is attributed to the high irreversibilities (1.7 × 105 MJ/h) in the separation stage, especially, to the centrifuge CF-2 (5.07%). The sensitivity analysis establishes that the global exergy efficiency increases when the performance of the centrifuge CF-2 is improved, suggesting to address enhancements toward low disposal of ethanol in the wastewater.
Collapse
Affiliation(s)
- David
Alfonso Patiño-Ruiz
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
| | - Samir Isaac Meramo-Hurtado
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
- Programa
de Ingeniería Industrial, Grupo de Investigación de
Productividad y Gestión Empresarial, Fundación Universitaria Colombo Internacional, 130001 Cartagena, Colombia
| | - Mehrab Mehrvar
- Department
of Chemical Engineering, Ryerson University, M5B 2K3 Toronto, Ontario, Canada
| | - Lars Rehmann
- Department
of Chemical and Biochemical Engineering, University of Western Ontario, N6A 3K7 London, Ontario, Canada
| | - Edgar Quiñones-Bolaños
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
- Programa
de Ingeniería Civil, Grupo de Investigación de Modelación
Ambiental, Universidad de Cartagena, 130001 Cartagena, Colombia
| | - Ángel Dario González-Delgado
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
- Programa
de Ingeniería Química, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
| | - Adriana Herrera
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
- Programa
de Ingeniería Química, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
| |
Collapse
|