1
|
Moustafa R, Remete AM, Szakonyi Z, Szemerédi N, Spengler G, Le TM. Synthesis and Antimicrobial Evaluation of (+)-Neoisopulegol-Based Amino and Thiol Adducts. Int J Mol Sci 2025; 26:4791. [PMID: 40429932 DOI: 10.3390/ijms26104791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
A library of neoisopulegol-based amino and thiol adducts was developed from (+)-neoisopulegol, derived from commercially available (-)-isopulegol. Michael addition of different nucleophiles towards its highly active α,β-unsaturated γ-lactone motif was accomplished, resulting in diverse amino and thiol analogs in stereoselective reactions. Then, the lactone ring was opened, with NH3 and benzylamine furnishing primary amide and N-benzyl-substituted amide derivatives, respectively. The in vitro antimicrobial effect of prepared compounds was also explored. The results revealed that naphthylmethyl-substituted β-aminolactone, the most promising compound, displayed selective inhibition for the Gram-positive bacteria S. aureus with an MIC (minimum inhibitory concentration) value of 12.5 μM. A docking study was performed to interpret the obtained results.
Collapse
Affiliation(s)
- Reem Moustafa
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Attila Márió Remete
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- HUN-REN-SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
2
|
Morais AMMB, Kumla D, Martins VFR, Alves A, Gales L, Silva AMS, Costa PM, Mistry S, Kijjoa A, Morais RMSC. Monoterpene Hydroxy Lactones Isolated from Thalassiosira sp. Microalga and Their Antibacterial and Antioxidant Activities. Molecules 2024; 29:5175. [PMID: 39519816 PMCID: PMC11547300 DOI: 10.3390/molecules29215175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Two monoterpenoid lactones, loliolide (1) and epi-loliolide (2), were isolated from the crude dichloromethane extract of a microalga, Thalassiosira sp.). The structures of loliolide (1) and epi-loliolide (2) were elucidated by 1D and 2D NMR analysis, as well as a comparison of their 1H or/and 13C NMR data with those reported in the literature. In the case of loliolide (1), the absolute configurations of its stereogenic carbons were confirmed by X-ray analysis, whereas those of epi-loliolide (2) were determined by NOESY correlations. Loliolide (1) and epi-loliolide (2) were tested for their growth inhibitory activity against two Gram-positive (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212) and two Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853) bacteria, as well as one clinical isolate (E. coli SA/2, an extended-spectrum β-lactamase producer-ESBL) and two environmental isolates, S. aureus 74/24, a methicillin-resistant (MRSA), and E. faecalis B3/101, a vancomycin-resistant (VRE) isolates. The results showed that none of the tested compounds exhibited antibacterial activity at the highest concentrations tested (325 μM), and both revealed low antioxidant activity, with ORAC values of 2.786 ± 0.070 and 2.520 ± 0.319 µmol TE/100 mg for loliolide (1) and epi-loliolide (2), respectively.
Collapse
Affiliation(s)
- Alcina M. M. B. Morais
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.M.B.M.); (D.K.); (V.F.R.M.); (A.A.)
| | - Decha Kumla
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.M.B.M.); (D.K.); (V.F.R.M.); (A.A.)
| | - Valter F. R. Martins
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.M.B.M.); (D.K.); (V.F.R.M.); (A.A.)
| | - Ana Alves
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.M.B.M.); (D.K.); (V.F.R.M.); (A.A.)
| | - Luis Gales
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (L.G.); (P.M.C.); (A.K.)
- Instituto de Biologia Molecular e Celular (i3S-IBMC), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Artur M. S. Silva
- Departamento de Química & QOPNA, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Paulo M. Costa
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (L.G.); (P.M.C.); (A.K.)
- Instituto de Biologia Molecular e Celular (i3S-IBMC), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sharad Mistry
- Department of Chemistry, University of Leicester, University Road, Leicester LE 7 RH, UK;
| | - Anake Kijjoa
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (L.G.); (P.M.C.); (A.K.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Rui M. S. C. Morais
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.M.B.M.); (D.K.); (V.F.R.M.); (A.A.)
| |
Collapse
|
3
|
Le TM, Njangiru IK, Vincze A, Zupkó I, Balogh GT, Szakonyi Z. Synthesis and medicinal chemical characterisation of antiproliferative O, N-functionalised isopulegol derivatives. RSC Adv 2024; 14:18508-18518. [PMID: 38867736 PMCID: PMC11168086 DOI: 10.1039/d4ra03467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
Benzylation of isopulegol furnished O-benzyl-protected isopulegol, which was transformed into aminodiols via epoxidation followed by ring opening of the corresponding epoxides and subsequent hydrogenolysis. On the other hand, (-)-isopulegol was oxidised to a diol, which was then converted into dibenzyl-protected diol derivatives. The products were then transformed into aminotriols by using a similar method. The antiproliferative activity of aminodiol and aminotriol derivatives was examined. In addition, structure-activity relationships were also explored from the aspects of substituent effects and stereochemistry on the aminodiol and aminotriol systems. The drug-likeness of the compounds was assessed by in silico and experimental physicochemical characterisations, completed by kinetic aqueous solubility and in vitro intestinal-specific parallel artificial membrane permeability assay (PAMPA-GI) measurements.
Collapse
Affiliation(s)
- Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged Eötvös utca 6 H-6720 Szeged Hungary +36 62 545705 +36 62 546809
- HUN-REN-SZTE Stereochemistry, Research Group, University of Szeged Eötvös u. 6 H-6720 Szeged Hungary
| | - Isaac Kinyua Njangiru
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged H-6720 Eötvös utca 6 Szeged Hungary
| | - Anna Vincze
- Department of Pharmaceutical Chemistry, Semmelweis University Hőgyes Endre u. 9 H-1092 Budapest Hungary
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged H-6720 Eötvös utca 6 Szeged Hungary
| | - György T Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University Hőgyes Endre u. 9 H-1092 Budapest Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged Eötvös utca 6 H-6720 Szeged Hungary +36 62 545705 +36 62 546809
| |
Collapse
|
4
|
Bamou FZ, Le TM, Tayeb BA, Tahaei SAS, Minorics R, Zupkó I, Szakonyi Z. Antiproliferative Activity of (-)-Isopulegol-based 1,3-Oxazine, 1,3-Thiazine and 2,4-Diaminopyrimidine Derivatives. ChemistryOpen 2022; 11:e202200169. [PMID: 36200514 PMCID: PMC9535514 DOI: 10.1002/open.202200169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
A series of novel heterocyclic structures, namely 1,3-oxazines, 1,3-thiazines and 2,4-diaminopyrimidines, were designed and synthesised. The bioassay tests demonstrated that, among these analogues, 2,4-diaminopyridine derivatives showed significant antiproliferative activity against different human cancer cell lines (A2780, SiHa, HeLa, MCF-7 and MDA-MB-231). Pyrimidines substituted with N2 -(p-trifluoromethyl)aniline, in particular, displayed a potent inhibitory effect on the growth of cancer cells. Structure-activity relationships were also studied from the aspects of stereochemistry on the aminodiol moiety as well as exploring the effects of substituents on the pyrimidine scaffold.
Collapse
Affiliation(s)
- Fatima Z. Bamou
- Institute of Pharmaceutical Chemistry andMTA-SZTE Stereochemistry Research GroupHungarian Academy of SciencesUniversity of SzegedEötvös u. 66720SzegedHungary
| | - Tam M. Le
- Institute of Pharmaceutical Chemistry andMTA-SZTE Stereochemistry Research GroupHungarian Academy of SciencesUniversity of SzegedEötvös u. 66720SzegedHungary
| | - Bizhar A. Tayeb
- Department of Pharmacodynamics and BiopharmacyUniversity of SzegedEötvös u. 66720SzegedHungary
| | - Seyyed A. S. Tahaei
- Department of Pharmacodynamics and BiopharmacyUniversity of SzegedEötvös u. 66720SzegedHungary
| | - Renáta Minorics
- Department of Pharmacodynamics and BiopharmacyUniversity of SzegedEötvös u. 66720SzegedHungary
| | - István Zupkó
- Department of Pharmacodynamics and BiopharmacyUniversity of SzegedEötvös u. 66720SzegedHungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry andMTA-SZTE Stereochemistry Research GroupHungarian Academy of SciencesUniversity of SzegedEötvös u. 66720SzegedHungary
| |
Collapse
|
5
|
Ivshina IB, Luchnikova NA, Maltseva PY, Ilyina IV, Volcho KP, Gatilov YV, Korchagina DV, Kostrikina NA, Sorokin VV, Mulyukin AL, Salakhutdinov NF. Biotransformation of (–)-Isopulegol by Rhodococcus rhodochrous. Pharmaceuticals (Basel) 2022; 15:ph15080964. [PMID: 36015112 PMCID: PMC9412403 DOI: 10.3390/ph15080964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The ability of actinobacteria of the genus Rhodococcus to biotransform the monoterpenoid (–)-isopulegol has been established for the first time. R. rhodochrous strain IEGM 1362 was selected as a bacterium capable of metabolizing (–)-isopulegol to form new, previously unknown, 10-hydroxy (2) and 10-carboxy (3) derivatives, which may presumably have antitumor activity and act as respiratory stimulants and cancer prevention agents. In the experiments, optimal conditions were selected to provide the maximum target catalytic activity of rhodococci. Using up-to-date (TEM, AFM-CLSM, and EDX) and traditional (cell size, roughness, and zeta potential measurements) biophysical and microbiological methods, it was shown that (–)-isopulegol and halloysite nanotubes did not negatively affect the bacterial cells. The data obtained expand our knowledge of the biocatalytic potential of rhodococci and their possible involvement in the synthesis of pharmacologically active compounds from plant derivatives.
Collapse
Affiliation(s)
- Irina B. Ivshina
- Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 13 Golev Str., 614081 Perm, Russia;
- Department of Microbiology and Immunology, Perm State National Research University, 15 Bukirev Str., 614990 Perm, Russia;
- Correspondence: ; Tel.: +7-(342)-2808114; Fax: +7-(342)-2809211
| | - Natalia A. Luchnikova
- Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 13 Golev Str., 614081 Perm, Russia;
- Department of Microbiology and Immunology, Perm State National Research University, 15 Bukirev Str., 614990 Perm, Russia;
| | - Polina Yu. Maltseva
- Department of Microbiology and Immunology, Perm State National Research University, 15 Bukirev Str., 614990 Perm, Russia;
| | - Irina V. Ilyina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (I.V.I.); (K.P.V.); (Y.V.G.); (D.V.K.); (N.F.S.)
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (I.V.I.); (K.P.V.); (Y.V.G.); (D.V.K.); (N.F.S.)
| | - Yurii V. Gatilov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (I.V.I.); (K.P.V.); (Y.V.G.); (D.V.K.); (N.F.S.)
| | - Dina V. Korchagina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (I.V.I.); (K.P.V.); (Y.V.G.); (D.V.K.); (N.F.S.)
| | - Nadezhda A. Kostrikina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktyabrya, 7, bld. 2, 117312 Moscow, Russia; (N.A.K.); (V.V.S.); (A.L.M.)
| | - Vladimir V. Sorokin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktyabrya, 7, bld. 2, 117312 Moscow, Russia; (N.A.K.); (V.V.S.); (A.L.M.)
| | - Andrey L. Mulyukin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktyabrya, 7, bld. 2, 117312 Moscow, Russia; (N.A.K.); (V.V.S.); (A.L.M.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (I.V.I.); (K.P.V.); (Y.V.G.); (D.V.K.); (N.F.S.)
| |
Collapse
|
6
|
Szakonyi Z, Raji M, Le TM, Csámpai A, Nagy V, Zupkó I. Stereoselective Synthesis and Applications of Pinane-Based Chiral 1,4-Amino Alcohol Derivatives. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractA new library of pinane-based 1,4-amino alcohols was synthesised and utilised as chiral ligands in enantioselective diethylzinc addition to benzaldehyde. Aldol condensation of (+)-nopinone, derived from (–)-β-pinene, with 2-pyridinecarboxaldehyde gave the key intermediate α,β-unsaturated ketone, which was transformed in diastereoselective reduction, followed by hydrogenation, resulting in 1,4-amino alcohols. On the other hand, epoxidation of the α,β-unsaturated ketone, followed by reduction and then hydrogenation of the pyridine ring, afforded a mixture of 4-amino-2,3-epoxy-1-ols. Stereoselective hydride reduction of the epoxy ketone and subsequent condensation of the resulting products with substituted benzyl bromides provided quaternary ammonium salts, which were subjected to hydride reduction and then hydrogenation, affording 4-amino-2,3-epoxy-1-ol derivatives containing an N-benzylpiperidine moiety. The inhibition of nucleophile-initiated opening of the oxirane ring was interpreted by a systematic series of comparative Hartree–Fock modelling study using the 6-31+G(d,p) basis set. The antiproliferative activities of 4-amino-2,3-epoxy-1-ol derivatives were examined, and structure–activity relationships were studied from the aspects of the stereochemistry of the oxirane ring, saturation, and substituent effects on the piperidine ring system.
Collapse
Affiliation(s)
- Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellence Center
| | - Mounir Raji
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellence Center
| | - Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellence Center
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Science
| | | | - Viktória Nagy
- Institute of Pharmacodynamics and Biopharmacy, Interdisciplinary Excellence Center, University of Szeged
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Interdisciplinary Excellence Center, University of Szeged
| |
Collapse
|
7
|
Minh Le T, Szakonyi Z. Enantiomeric Isopulegol as the Chiral Pool in the Total Synthesis of Bioactive Agents. CHEM REC 2021; 22:e202100194. [PMID: 34553822 DOI: 10.1002/tcr.202100194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/05/2021] [Indexed: 11/12/2022]
Abstract
Isopulegol, a pool of abundant chiral terpene, has long served as the starting material for the total synthesis of isopulegol-based drugs. As an inexpensive and versatile starting material, this compound continues to serve modern synthetic chemistry. This review highlights the total syntheses of terpenoids in the period from 1980 to 2020 in which with isopulegol applied as a building block.
Collapse
Affiliation(s)
- Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720, Szeged, Hungary.,Stereochemistry Research Group of the Hungarian Academy Science, Eötvös utca 6, H-6720, Szeged, Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720, Szeged, Hungary.,Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös utca 6, H-6720, Szeged, Hungary
| |
Collapse
|
8
|
Le TM, Huynh T, Bamou FZ, Szekeres A, Fülöp F, Szakonyi Z. Novel (+)-Neoisopulegol-Based O-Benzyl Derivatives as Antimicrobial Agents. Int J Mol Sci 2021; 22:5626. [PMID: 34073167 PMCID: PMC8198684 DOI: 10.3390/ijms22115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Discovery of novel antibacterial agents with new structures, which combat pathogens is an urgent task. In this study, a new library of (+)-neoisopulegol-based O-benzyl derivatives of aminodiols and aminotriols was designed and synthesized, and their antimicrobial activity against different bacterial and fungal strains were evaluated. The results showed that this new series of synthetic O-benzyl compounds exhibit potent antimicrobial activity. Di-O-benzyl derivatives showed high activity against Gram-positive bacteria and fungi, but moderate activity against Gram-negative bacteria. Therefore, these compounds may serve a good basis for antibacterial and antifungal drug discovery. Structure-activity relationships were also studied from the aspects of stereochemistry of the O-benzyl group on cyclohexane ring and the substituent effects on the ring system.
Collapse
Affiliation(s)
- Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720 Szeged, Hungary; (T.M.L.); (F.Z.B.); (F.F.)
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Thu Huynh
- Department of Microbiology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary; (T.H.); (A.S.)
- Department of Biotecnology, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 72607, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 71351, Vietnam
| | - Fatima Zahra Bamou
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720 Szeged, Hungary; (T.M.L.); (F.Z.B.); (F.F.)
| | - András Szekeres
- Department of Microbiology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary; (T.H.); (A.S.)
- Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720 Szeged, Hungary; (T.M.L.); (F.Z.B.); (F.F.)
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720 Szeged, Hungary; (T.M.L.); (F.Z.B.); (F.F.)
- Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
| |
Collapse
|