1
|
Clemence BF, Xiao L, Yang G. Oral Administration of Berberine Hydrochloride Based on Chitosan/Carboxymethyl-β-Cyclodextrin Hydrogel. Polymers (Basel) 2024; 16:2368. [PMID: 39204588 PMCID: PMC11360765 DOI: 10.3390/polym16162368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, a novel oral formulation of berberine hydrochloride (BBH) hydrogel was successfully synthesized through physical cross-linking using chitosan (CS) and carboxymethyl-β-cyclodextrin (CMCD). The characterization results confirmed the successful synthesis of the CS/CMCD hydrogel and the subsequent loading of BBH into this composite (CS/CMCD/BBH) was effectively accomplished. The BBH was used as a model drug and the resulting hydrogel demonstrated a sustained drug release profile. In addition to its improved solubility and sustained release characteristics, the hydrogel exhibited excellent antibacterial activity against common pathogens such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans). Additionally, in vitro studies indicated that the hydrogel was not cytotoxic to NIH3T3 and HaCaT cells, suggesting its safety for biomedical applications. This lack of cytotoxic effects, combined with the mechanical strength, solubility improvements, and antibacterial properties of the hydrogel, positions the CS/CMCD/BBH hydrogel as a promising candidate for the effective oral delivery of BBH. By addressing the solubility and delivery challenges of BBH, this hydrogel offers a viable solution for the oral administration of BBH, with potential applications in various biomedical fields.
Collapse
Affiliation(s)
- Bukatuka Futila Clemence
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Lin Xiao
- School of Biomedical Engineering, Sun Yat-Set University, Shenzhen 518107, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| |
Collapse
|
2
|
Ngema L, Adeyemi SA, Marimuthu T, Ubanako PN, Ngwa W, Choonara YE. Short Antiangiogenic MMP-2 Peptide-Decorated Conjugated Linoleic Acid-Coated SPIONs for Targeted Paclitaxel Delivery in an A549 Cell Xenograft Mouse Tumor Model. ACS OMEGA 2024; 9:700-713. [PMID: 38222506 PMCID: PMC10785664 DOI: 10.1021/acsomega.3c06489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 01/16/2024]
Abstract
The design of targeted antiangiogenic nanovectors for the delivery of anticancer drugs presents a viable approach for effective management of nonsmall-cell lung carcinoma (NSCLC). Herein, we report on the fabrication of a targeted delivery nanosystem for paclitaxel (PTX) functionalized with a short antimatrix metalloproteinase 2 (MMP-2) CTT peptide for selective MMP-2 targeting and effective antitumor activity in NSCLC. The fabrication of the targeted nanosystem (CLA-coated PTX-SPIONs@CTT) involved coating of superparamagnetic iron-oxide nanoparticles (SPIONs) with conjugated linoleic acid (CLA) via chemisorption, onto which PTX was adsorbed, and subsequent surface functionalization with carboxylic acid groups for conjugation of the CTT peptide. CLA-coated PTX SPIONs@CTT had a mean particle size of 99.4 nm and a PTX loading efficiency of ∼98.5%. The nanosystem exhibited a site-specific in vitro PTX release and a marked antiproliferative action on lung adenocarcinoma cells. The CTT-functionalized nanosystem significantly inhibited MMP-2 secretion by almost 70% from endothelial cells, indicating specific anti-MMP-2 activity. Treatment of tumor-bearing mice with subcutaneous injection of the CTT-functionalized nanosystem resulted in 69.7% tumor inhibition rate, and the administration of the nanosystem subcutaneously prolonged the half-life of PTX and circulation time in vivo. As such, CLA-coated PTX-SPIONs@CTT presents with potential for application as a targeted nanomedicine in NSCLC management.
Collapse
Affiliation(s)
- Lindokuhle
M. Ngema
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Samson A. Adeyemi
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Thashree Marimuthu
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Philemon N. Ubanako
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Wilfred Ngwa
- Sidney
Kimmel Comprehensive Cancer Center, Johns
Hopkins Medicine, Baltimore, Maryland 21218, United States
| | - Yahya E. Choonara
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
3
|
Co-Delivery of 5-Fluorouracil and Paclitaxel in Mitochondria-Targeted KLA-Modified Liposomes to Improve Triple-Negative Breast Cancer Treatment. Pharmaceuticals (Basel) 2022; 15:ph15070881. [PMID: 35890181 PMCID: PMC9318860 DOI: 10.3390/ph15070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022] Open
Abstract
In this research, KLA-modified liposomes co-loaded with 5-fluorouracil and paclitaxel (KLA-5-FU/PTX Lps) were developed, and their antitumor activity against triple-negative breast cancer (TNBC) was evaluated. KLA-5-FU/PTX Lps were prepared using the thin-film dispersion method, and their in vitro anticancer efficacy was assessed in human breast cancer cells (MDA-MB-231). An MDA-MB-231 tumor-bearing mouse model was also established to evaluate their antitumor efficacy in vivo. KLA-5-FU/PTX Lps showed enhanced cytotoxicity against MDA-MB-231 cells, improved drug delivery to mitochondria, and induced mitochondria-mediated apoptosis. The modified liposomes also showed favorable antitumor activity in vivo due to their strong ability to target tumors and mitochondria. The liposomes showed no obvious systemic toxicity. Our results suggest that KLA-5-FU/PTX Lps are a promising system with which to target the delivery of antitumor drugs to mitochondria as a treatment for TNBC.
Collapse
|