1
|
Liu J, Liu F, Liang T, Zhou Y, Su X, Li X, Zeng J, Qu P, Wang Y, Chen F, Lei Q, Li G, Cheng P. The roles of Th cells in myocardial infarction. Cell Death Discov 2024; 10:287. [PMID: 38879568 PMCID: PMC11180143 DOI: 10.1038/s41420-024-02064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Myocardial infarction, commonly known as a heart attack, is a serious condition caused by the abrupt stoppage of blood flow to a part of the heart, leading to tissue damage. A significant aspect of this condition is reperfusion injury, which occurs when blood flow is restored but exacerbates the damage. This review first addresses the role of the innate immune system, including neutrophils and macrophages, in the cascade of events leading to myocardial infarction and reperfusion injury. It then shifts focus to the critical involvement of CD4+ T helper cells in these processes. These cells, pivotal in regulating the immune response and tissue recovery, include various subpopulations such as Th1, Th2, Th9, Th17, and Th22, each playing a unique role in the pathophysiology of myocardial infarction and reperfusion injury. These subpopulations contribute to the injury process through diverse mechanisms, with cytokines such as IFN-γ and IL-4 influencing the balance between tissue repair and injury exacerbation. Understanding the interplay between the innate immune system and CD4+ T helper cells, along with their cytokines, is crucial for developing targeted therapies to mitigate myocardial infarction and reperfusion injury, ultimately improving outcomes for cardiac patients.
Collapse
Affiliation(s)
- Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xiaohan Su
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue Li
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiao Zeng
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peng Qu
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yali Wang
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Fuli Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
2
|
Razali SA, Shamsir MS, Ishak NF, Low CF, Azemin WA. Riding the wave of innovation: immunoinformatics in fish disease control. PeerJ 2023; 11:e16419. [PMID: 38089909 PMCID: PMC10712311 DOI: 10.7717/peerj.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023] Open
Abstract
The spread of infectious illnesses has been a significant factor restricting aquaculture production. To maximise aquatic animal health, vaccination tactics are very successful and cost-efficient for protecting fish and aquaculture animals against many disease pathogens. However, due to the increasing number of immunological cases and their complexity, it is impossible to manage, analyse, visualise, and interpret such data without the assistance of advanced computational techniques. Hence, the use of immunoinformatics tools is crucial, as they not only facilitate the management of massive amounts of data but also greatly contribute to the creation of fresh hypotheses regarding immune responses. In recent years, advances in biotechnology and immunoinformatics have opened up new research avenues for generating novel vaccines and enhancing existing vaccinations against outbreaks of infectious illnesses, thereby reducing aquaculture losses. This review focuses on understanding in silico epitope-based vaccine design, the creation of multi-epitope vaccines, the molecular interaction of immunogenic vaccines, and the application of immunoinformatics in fish disease based on the frequency of their application and reliable results. It is believed that it can bridge the gap between experimental and computational approaches and reduce the need for experimental research, so that only wet laboratory testing integrated with in silico techniques may yield highly promising results and be useful for the development of vaccines for fish.
Collapse
Affiliation(s)
- Siti Aisyah Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Biological Security and Sustainability Research Interest Group (BIOSES), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nur Farahin Ishak
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Chen-Fei Low
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Yadav N, Patel H, Parmar R, Patidar M, Dalai SK. TCR-signals downstream adversely correlate with the survival signals of memory CD8 + T cells under homeostasis. Immunobiology 2023; 228:152354. [PMID: 36854249 DOI: 10.1016/j.imbio.2023.152354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
The significance of self-peptide-MHC-I/TCR (SMT) interaction in the survival of CD8+ T cells during naïve- and developmental-stages is well documented. However, the same for the memory stage is contentious. Previous studies have attempted to address the issue using MHC-I or TCR deficient systems, but inconsistent findings with memory CD8+ T cells of different TCR specificities have complicated the interpretation. Differential presence and/or processing of TCR-signals downstream in memory CD8+ T cells of different TCR specificities could be thought of as a reason. In this study, we examined the TCR-signals downstream in memory CD8+ T cells and compared them to the presence of survival-related signals (Annexin-V, Bcl-2, and Ki-67). We categorically tracked foreign antigen-experienced memory CD8+ T (TM) cells generated after Plasmodium pre-erythrocytic-stage malaria infection in C57BL/6 mice. Interestingly, we found that memory CD8+ T cells had more TCR-signals downstream than naive cells. We reasoned and attributed the increased expression of cell adhesion molecules to the enhanced TCR-signaling. TCR-signals downstream correlate more closely with survival signals in naive CD8+ T cells than with death signals in TM cells. Further investigation using antigen-specific CD8+ T cells and diverse infection systems would aid in conceptualizing the findings.
Collapse
Affiliation(s)
- Naveen Yadav
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India; Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA.
| | - Hardik Patel
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Rajesh Parmar
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, USA
| | - Manoj Patidar
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India; Department of Zoology, Govt. College Manawar, Dhar, Madhya Pradesh, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
4
|
Arumugam GS, Damodharan K, Doble M, Thennarasu S. Significant perspectives on various viral infections targeted antiviral drugs and vaccines including COVID-19 pandemicity. MOLECULAR BIOMEDICINE 2022; 3:21. [PMID: 35838929 PMCID: PMC9283561 DOI: 10.1186/s43556-022-00078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
A virus enters a living organism and recruits host metabolism to reproduce its own genome and proteins. The viral infections are intricate and cannot be completely removed through existing antiviral drugs. For example, the herpes, influenza, hepatitis and human immunodeficiency viruses are a few dreadful ones amongst them. Significant studies are needed to understand the viral entry and their growth in host cells to design effective antivirals. This review emphasizes the range of therapeutical antiviral drugs, inhibitors along with vaccines to fight against viral pathogens, especially for combating COVID-19. Moreover, we have provided the basic and in depth information about viral targets, drugs availability, their mechanisms of action, method of prevention of viral diseases and highlighted the significances of anticoagulants, convalescent plasma for COVID-19 treatment, scientific details of airborne transmission, characteristics of antiviral drug delivery using nanoparticles/carriers, nanoemulsions, nanogels, metal based nanoparticles, alike the future nanosystems through nanobubbles, nanofibers, nanodiamonds, nanotraps, nanorobots and eventually, the therapeutic applications of micro- and nanoparticulates, current status for clinical development against COVID-19 together with environmental implications of antivirals, gene therapy etc., which may be useful for repurposing and designing of novel antiviral drugs against various dreadful diseases, especially the SARS-CoV-2 and other associated variants.
Collapse
|
5
|
Sureja DK, Shah AP, Gajjar ND, Jadeja SB, Bodiwala KB, Dhameliya TM. In-silico Computational Investigations of AntiViral Lignan Derivatives as Potent Inhibitors of SARS CoV-2. ChemistrySelect 2022; 7:e202202069. [PMID: 35942360 PMCID: PMC9349937 DOI: 10.1002/slct.202202069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022]
Abstract
Due to alarming outbreak of pandemic COVID-19 in recent times, there is a strong need to discover and identify new antiviral agents acting against SARS CoV-2. Among natural products, lignan derivatives have been found effective against several viral strains including SARS CoV-2. Total of twenty-seven reported antiviral lignan derivatives of plant origin have been selected for computational studies to identify the potent inhibitors of SARS CoV-2. Molecular docking study has been carried out in order to predict and describe molecular interaction between active site of enzyme and lignan derivatives. Out of identified hits, clemastatin B and erythro-strebluslignanol G demonstrated stronger binding and high affinity with all selected proteins. Molecular dynamics simulation studies of clemastin B and savinin against promising targets of SARS CoV-2 have revealed their inhibitory potential against SARS CoV-2. In fine, in-silico computational studies have provided initial breakthrough in design and discovery of potential SARS CoV-2 inhibitors.
Collapse
Affiliation(s)
- Dipen K. Sureja
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Ashish P. Shah
- Department of Pharmacy, Sumandeep VidyapeethVadodara391760, GujaratIndia
| | - Normi D. Gajjar
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Shwetaba B. Jadeja
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Kunjan B. Bodiwala
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Tejas M. Dhameliya
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| |
Collapse
|
6
|
Rosen O, Jayson A, Goldvaser M, Dor E, Monash A, Levin L, Cherry L, Lupu E, Natan N, Girshengorn M, Epstein E. Optimization of VSV-ΔG-spike production process with the Ambr15 system for a SARS-COV-2 vaccine. Biotechnol Bioeng 2022; 119:1839-1848. [PMID: 35319097 PMCID: PMC9082513 DOI: 10.1002/bit.28088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/13/2022] [Indexed: 01/08/2023]
Abstract
To face the coronavirus disease 2019 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) virus, our institute has developed the rVSV‐ΔG‐spike vaccine, in which the glycoprotein of vesicular stomatitis virus (VSV) was replaced by the spike protein of SARS‐CoV‐2. Many process parameters can influence production yield. To maximize virus vaccine yield, each parameter should be tested independently and in combination with others. Here, we report the optimization of the production of the VSV‐ΔG‐spike vaccine in Vero cells using the Ambr15 system. This system facilitates high‐throughput screening of process parameters, as it contains 24 individually controlled, single‐use stirred‐tank minireactors. During optimization, critical parameters were tested. Those parameters included: cell densities; the multiplicity of infection; virus production temperature; medium addition and medium exchange; and supplementation of glucose in the virus production step. Virus production temperature, medium addition, and medium exchange were all found to significantly influence the yield. The optimized parameters were tested in the BioBLU 5p bioreactors production process and those that were found to contribute to the vaccine yield were integrated into the final process. The findings of this study demonstrate that an Ambr15 system is an effective tool for bioprocess optimization of vaccine production using macrocarriers and that the combination of production temperature, rate of medium addition, and medium exchange significantly improved virus yield.
Collapse
Affiliation(s)
- Osnat Rosen
- Department of Biotechnology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness Ziona, Israel
| | - Avital Jayson
- Department of Biotechnology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness Ziona, Israel
| | - Michael Goldvaser
- Department of Organic Chemistry, Israel Institute for Biological, Chemical and Environmental Sciences, Ness Ziona, Israel
| | - Eyal Dor
- Department of Biotechnology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness Ziona, Israel
| | - Arik Monash
- Department of Biotechnology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness Ziona, Israel
| | - Lilach Levin
- Department of Biotechnology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness Ziona, Israel
| | - Lilach Cherry
- Department of Biotechnology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness Ziona, Israel
| | - Edith Lupu
- Department of Biotechnology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness Ziona, Israel
| | - Niva Natan
- Department of Biotechnology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness Ziona, Israel
| | - Meni Girshengorn
- Department of Biotechnology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness Ziona, Israel
| | - Eyal Epstein
- Department of Biotechnology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness Ziona, Israel
| |
Collapse
|