1
|
Huang AX, Li R, Lv QY, Yu B. Photocatalytic Sulfonylation: Innovations and Applications. Chemistry 2024; 30:e202402416. [PMID: 39003604 DOI: 10.1002/chem.202402416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Photosynthesis, converting sustainable solar energy into chemical energy, has emerged as a promising craft to achieve diverse organic transformations due to its mild reaction conditions, sustainability, and high efficiency. The synthesis of sulfonated compounds has drawn significant attention in the pharmaceuticals, agrochemicals, and materials industries due to the unique structure and electronic properties of the sulfonyl groups. Over the past decades, many photocatalytic sulfonylation reactions have been developed. In this review, the recent advances in photocatalyzed sulfonylation have been reviewed since 2020, with a primary focus on discussing reaction design and mechanism.
Collapse
Affiliation(s)
- An-Xiang Huang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Qi-Yan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Wang D, Zeng L, Shi J, Gao S, Shi L, Sun S, Liang D. Electrophotocatalysis Versus Indirect Electrolysis: Electrochemical Selenocyclization of 3-Aza-1,5-dienes Facilitated by Energy Transfer, Direct Photolysis or N-Hydroxyphthalimide. Chemistry 2024; 30:e202400280. [PMID: 38651795 DOI: 10.1002/chem.202400280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Three hybrid electrochemical protocols, which involve the energy transfer, direct photolysis and N-hydroxyphthalimide catalyst, respectively, are presented for the selenylation/cyclization of the fragile substrates of 3-aza-1,5-dienes with diorganyl diselenides to afford 3-selenomethyl-4-pyrrolin-2-ones. The two electrophotocatalytic reactions and the indirect electrolysis one are both regioselective and external-oxidant- and transition-metal-free, and are associated with a broad substrate scope and high Se-economy, and all three methods are amenable to gram-scale syntheses, late-stage functionalizations, sunlight-induced experiments and all-solar-driven syntheses.
Collapse
Affiliation(s)
- Dongyin Wang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, 2 Puxin Road, Kunming, 650214, China
| | - Li Zeng
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, 2 Puxin Road, Kunming, 650214, China
| | - Jifu Shi
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, 2 Puxin Road, Kunming, 650214, China
| | - Shulin Gao
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, 2 Puxin Road, Kunming, 650214, China
| | - Lou Shi
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, 2 Puxin Road, Kunming, 650214, China
| | - Shaoguang Sun
- Medical College, Panzhihua University, 10 Airport Road, Panzhihua, 617000, China
| | - Deqiang Liang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, 2 Puxin Road, Kunming, 650214, China
| |
Collapse
|
3
|
Zhang Z, Wang J, Yu C, Tan J, Du H, Chen N. Visible-Light-Induced Acylative Pyridylation of Styrenes. Org Lett 2024. [PMID: 38809604 DOI: 10.1021/acs.orglett.4c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A visible-light-induced photocatalyst-free acylative pyridylation of styrenes with 4-acyl-1,4-dihydropyridines (DHPs) and 4-cyanopyridines has been described, featuring mild reaction conditions, a broad substrate scope, and good functional group tolerance. The reaction could also be performed under sunlight irradiation albeit with a slightly lower conversion. 4-Acyl-1,4-DHPs serve a dual role, acting as both a photoreductant to reduce the cyanopyridine to its radical anion intermediate and a radical precursor to produce the acyl radical. The mechanism was especially elucidated through the Hammett analysis, with the quadratic linear regression analysis by using radical dual parameters, σmb and σjj·. The findings from Hammett analysis further demonstrate that the rate-limiting step of the process is the single electron transfer between 4-acyl-1,4-DHPs and 4-cyanopyridines.
Collapse
Affiliation(s)
- Zhiqin Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jianwei Wang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Chenfeng Yu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiajing Tan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hongguang Du
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Ning Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
4
|
Liu R, Zou T, Yu S, Li W, Wei S, Gong Y, Zhang Z, Zhang S, Yi D. Photoredox-Catalyzed Three-Component 1,2-Cyanoalkylpyridylation of Styrenes with Nonredox-Active Cyclic Oximes. J Org Chem 2023; 88:16410-16423. [PMID: 37943006 DOI: 10.1021/acs.joc.3c01936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Three-component alkene 1,2-difunctionalizations have emerged as a powerful strategy for rapid buildup of diverse and complex alkylpyridines, but the distal functionalized alkyl radicals for the alkene 1,2-alkylpyridylations were still rare. Herein, we report an example of regioselective three-component 1,2-cyanoalkylpyridylation of feedstock styrenes with accessible nonredox-active cyclic oximes through visible-light photoredox catalysis, providing a series of structurally diverse β-cyanoalkylated alkylpyridines. This protocol proceeds through a radical relay pathway including the generation of iminyl radicals enabled by phosphoranyl radical-mediated β-scission, radical transposition through C-C bond cleavage, highly selective radical addition, and precise radical-radical cross-coupling sequence, thus facilitating the regioselective formation of two distinct C-C single bonds in a single-pot operation. This synthetic strategy features mild conditions, broad compatibility of functional groups and substrate scope, diverse product derivatization, and late-stage modification.
Collapse
Affiliation(s)
- Rui Liu
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ting Zou
- Pharmacy Intravenous Admixture Service, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Sha Yu
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Weicai Li
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Siping Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yimou Gong
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhijie Zhang
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shiqi Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
5
|
Vytla D, Emmadi J, Velayuthaperumal R, Shaw P, Cavallaro CL, Mathur A, Roy A. Visible-light enabled one-pot three-component Petasis reaction for synthesis of α-substituted secondary sulfonamides/amides/hydrazides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Photoinitiated multicomponent cascade reaction of Nheteroarenes with unactivated alkenes and trimethylsilyl azide. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Burykina JV, Kobelev AD, Shlapakov NS, Kostyukovich AY, Fakhrutdinov AN, König B, Ananikov VP. Intermolecular Photocatalytic Chemo‐, Stereo‐ and Regioselective Thiol–Yne–Ene Coupling Reaction. Angew Chem Int Ed Engl 2022; 61:e202116888. [PMID: 35147284 PMCID: PMC9313788 DOI: 10.1002/anie.202116888] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 11/11/2022]
Abstract
The first example of an intermolecular thiol–yne–ene coupling reaction is reported for the one‐pot construction of C−S and C−C bonds. Thiol–yne–ene coupling opens a new dimension in building molecular complexity to access densely functionalized products. The employment of Eosin Y/DBU/MeOH photocatalytic system suppresses hydrogen atom transfer (HAT) and associative reductant upconversion (via C−S three‐electron σ‐bond formation). Investigation of the reaction mechanism by combining online ESI‐UHRMS, EPR spectroscopy, isotope labeling, determination of quantum yield, cyclic voltammetry, Stern–Volmer measurements and computational modeling revealed a unique photoredox cycle with four radical‐involving stages. As a result, previously unavailable products of the thiol–yne–ene reaction were obtained in good yields with high selectivity. They can serve as stable precursors for synthesizing synthetically demanding activated 1,3‐dienes.
Collapse
Affiliation(s)
- Julia V. Burykina
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect, 47 Moscow 119991 Russia
| | - Andrey D. Kobelev
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect, 47 Moscow 119991 Russia
- Lomonosov Moscow State University Leninskie Gory GSP-1, 1-3 Moscow 119991 Russia
| | - Nikita S. Shlapakov
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect, 47 Moscow 119991 Russia
- Institut für Organische Chemie Universität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Alexander Yu. Kostyukovich
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect, 47 Moscow 119991 Russia
| | - Artem N. Fakhrutdinov
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect, 47 Moscow 119991 Russia
| | - Burkhard König
- Institut für Organische Chemie Universität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect, 47 Moscow 119991 Russia
- Lomonosov Moscow State University Leninskie Gory GSP-1, 1-3 Moscow 119991 Russia
| |
Collapse
|
8
|
Zhou HJ, Huang JM. Hydropyridylation of α,β-Unsaturated Esters through Electroreduction of 4-Cyanopyridine. J Org Chem 2022; 87:5328-5338. [PMID: 35385272 DOI: 10.1021/acs.joc.2c00177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mild and highly efficient method for the hydropyridylation of α,β-unsaturated esters has been developed. This protocol provides the products smoothly with a wide substrate scope in an undivided cell under ambient conditions. Moreover, studies showed that the scope could be extended to other unsaturated compounds, including enones and aldehydes.
Collapse
Affiliation(s)
- Hua-Jian Zhou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
9
|
Long T, Pan S, Zhu S, Chu L. Catalyst‐Free Intermolecular Sulfonyl/Fluoromethyl Heteroarylation of Vinyl Ethers via Visible‐Light‐Induced Charge Transfer. Chemistry 2022; 28:e202104080. [DOI: 10.1002/chem.202104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Tianyu Long
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Shiwei Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| |
Collapse
|
10
|
Ma CH, Ji Y, Zhao J, He X, Zhang ST, Jiang YQ, Jiang YQ. Transition-metal-free three-component acetalation-pyridylation of alkenes via photoredox catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63917-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Burykina JV, Kobelev AD, Shlapakov NS, Kostyukovich AY, Fakhrutdinov AN, König B, Ananikov VP. Intermolecular Photocatalytic Chemo‐, Stereo‐ and Regioselective Thiol‐yne‐ene Coupling Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julia. V. Burykina
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Catalysis RUSSIAN FEDERATION
| | - Andrey D. Kobelev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Catalysis RUSSIAN FEDERATION
| | - Nikita S. Shlapakov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Catalysis RUSSIAN FEDERATION
| | - Alexander Yu. Kostyukovich
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Catalysis RUSSIAN FEDERATION
| | - Artem N. Fakhrutdinov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Catalysis RUSSIAN FEDERATION
| | - Burkhard König
- University of Regensburg: Universitat Regensburg Organic GERMANY
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt 47 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
12
|
Liang S, Hofman K, Friedrich M, Keller J, Manolikakes G. Recent Progress and Emerging Technologies towards a Sustainable Synthesis of Sulfones. CHEMSUSCHEM 2021; 14:4878-4902. [PMID: 34476903 PMCID: PMC9292207 DOI: 10.1002/cssc.202101635] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Indexed: 06/12/2023]
Abstract
Sulfones play a pivotal role in modern organic chemistry. They are highly versatile building blocks and find various applications as drugs, agrochemicals, or functional materials. Therefore, sustainable access to this class of molecules is of great interest. Herein, the goal was to provide a summary on recent developments in the field of sustainable sulfone synthesis. Advances and existing limitations in traditional approaches towards sulfones were reviewed on selected examples. Furthermore, novel emerging technologies for a more sustainable sulfone synthesis and future directions were discussed.
Collapse
Affiliation(s)
- Shuai Liang
- Department of Medicinal Chemistry, School of PharmacyQingdao University Medical CollegeNo.1 Ningde Road266073QingdaoP. R. China
| | - Kamil Hofman
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Marius Friedrich
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Julian Keller
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Georg Manolikakes
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| |
Collapse
|
13
|
Tong S, Li K, Ouyang X, Song R, Li J. Recent advances in the radical-mediated decyanative alkylation of cyano(hetero)arene. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
Kim M, You E, Park S, Hong S. Divergent reactivity of sulfinates with pyridinium salts based on one- versus two-electron pathways. Chem Sci 2021; 12:6629-6637. [PMID: 34040737 PMCID: PMC8132931 DOI: 10.1039/d1sc00776a] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/30/2021] [Indexed: 01/04/2023] Open
Abstract
One of the main goals of modern synthesis is to develop distinct reaction pathways from identical starting materials for the efficient synthesis of diverse compounds. Herein, we disclose the unique divergent reactivity of the combination sets of pyridinium salts and sulfinates to achieve sulfonative pyridylation of alkenes and direct C4-sulfonylation of pyridines by controlling the one- versus two-electron reaction manifolds for the selective formation of each product. Base-catalyzed cross-coupling between sulfinates and N-amidopyridinium salts led to the direct introduction of a sulfonyl group into the C4 position of pyridines. Remarkably, the reactivity of this set of compounds is completely altered upon exposure to visible light: electron donor-acceptor complexes of N-amidopyridinium salts and sulfinates are formed to enable access to sulfonyl radicals. In this catalyst-free radical pathway, both sulfonyl and pyridyl groups could be incorporated into alkenes via a three-component reaction, which provides facile access to a variety of β-pyridyl alkyl sulfones. These two reactions are orthogonal and complementary, achieving a broad substrate scope in a late-stage fashion under mild reaction conditions.
Collapse
Affiliation(s)
- Myojeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Euna You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Seongjin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|