1
|
Farajpour B, Alizadeh GB, Majedi S, Moradkhani F, Majedi S, Notash B, Hosseindoust B, Shiri M. Sulfur- and DABCO-Promoted Reaction between Alkylidene Rhodanines and Isothiocyanates: Access to Aminoalkylidene Rhodanines. ACS OMEGA 2024; 9:26607-26615. [PMID: 38911738 PMCID: PMC11191098 DOI: 10.1021/acsomega.4c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
In this work, an efficient sulfur- and DABCO-promoted reaction for the synthesis of aminoalkylidene rhodanines from available alkylidene rhodanines and isothiocyanates is reported. A tandem process including sulfurative annulation/ring-opening by liberation of a CS2 molecule/olefination allows the synthesis of aminoalkylidene rhodanines with acceptable functional group tolerance. Chemo- and stereoselectivity, operational simplicity, and synthetically useful yields are some highlighted advantages of these transformations.
Collapse
Affiliation(s)
- Behnaz Farajpour
- Department
of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| | - Gul Bahar Alizadeh
- Department
of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| | - Soma Majedi
- Medical
Analysis Department, Applied Science Faculty, Tishk International University, Kurdistan Region 46001, Iraq
| | - Fatemeh Moradkhani
- Department
of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences
Research Center, Tehran University of Medical
Sciences, Tehran P94V+8MF, Iran
| | - Serveh Majedi
- Department
of Chemistry, Payame Noor University, Tehran RG23+F4X, Iran
| | - Behrouz Notash
- Department
of Inorganic Chemistry, Shahid Beheshti
University, Tehran 1983969411, Iran
| | - Benyamin Hosseindoust
- Department
of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| | - Morteza Shiri
- Department
of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| |
Collapse
|
2
|
Farajpour B, Heydarzadeh R, Hussain FHS, Notash B, Mirzaei P, Shiri M. Three-Component Reaction between 3-Acetylcoumarins, Amines, and Elemental Sulfur: A Designed Approach to 3-Amino-4 H-thieno[3,2- c]coumarins. J Org Chem 2024; 89:4375-4383. [PMID: 38470427 DOI: 10.1021/acs.joc.3c02406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In this work, a series of novel 3-amino-4H-thieno[3,2-c]coumarins were designed and synthesized by a one-pot, catalyst-free, and three-component reaction of 3-acetylcoumarins with amines and elemental sulfur. Readily available starting materials, simple heating conditions, facile installation of a sulfur atom into the molecule using S8 as a sulfur source, acceptable functional group tolerance, and synthetically useful yields are some highlighted benefits of this process.
Collapse
Affiliation(s)
- Behnaz Farajpour
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| | - Roujin Heydarzadeh
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| | - Faiq H S Hussain
- Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Behrouz Notash
- Department of Inorganic Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Peiman Mirzaei
- Department of Organic Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Morteza Shiri
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| |
Collapse
|
3
|
Jadav JP, Vankar JK, Gupta A, Gururaja GN. Atmospheric Oxygen Facilitated Oxidative Amidation to α-Ketoamides and Unusual One Carbon Degradative Amidation to N-Alkyl Amides. J Org Chem 2023; 88:15551-15561. [PMID: 37883330 DOI: 10.1021/acs.joc.3c00457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A mild, transition-metal-free novel synthetic approach for the construction of C═O and C-N bonds has been demonstrated. Easily accessible gem-dibromoalkenes under similar conditions form oxidative amidation product α-ketoamides and unusual degradative amidation product N-alkyl amides by simply changing the amine substitute. Atmospheric air containing molecular oxygen proved to be an ideal oxidant for an amidation reaction. Under similar conditions, the electron-deficient gem-dibromoalkenes play a dual role with different formamides forming novel oxidative amidation products and by the state of art neighboring group participation of amine to unusual one-carbon degradative amidation products.
Collapse
Affiliation(s)
- Jaydeepbhai P Jadav
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Jigarkumar K Vankar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Ankush Gupta
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | | |
Collapse
|
4
|
Hooshmand SE, Baeiszadeh B, Mohammadnejad M, Ghasemi R, Darvishi F, Khatibi A, Shiri M, Hussain FHS. Novel probe based on rhodamine B and quinoline as a naked-eye colorimetric probe for dual detection of nickel and hypochlorite ions. Sci Rep 2023; 13:17038. [PMID: 37813911 PMCID: PMC10562415 DOI: 10.1038/s41598-023-44395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2023] Open
Abstract
This work demonstrates the design and straightforward syntheses of several novel probe-based on rhodamine B and 2-mercaptoquinoline-3-carbaldehydes as a naked-eye colorimetric probe, indicating a sensitive and selective recognition towards nickel (II) with a limit of detection 0.30 μmol L-1 (0.02 mg L-1). Further, by employing the oxidation property of hypochlorite (OCl-), this novel probe parallelly has been deployed to detect hypochlorite in laboratory conditions with a limit of detection of 0.19 μmol mL-1 and in living cells. Regarded to negligible cell toxicity toward mammalian cells, this probe has the potential to determine these analytes in in-vivo investigation and foodstuff samples.
Collapse
Affiliation(s)
- Seyyed Emad Hooshmand
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran
| | - Behnaz Baeiszadeh
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran
| | - Masoumeh Mohammadnejad
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran.
| | - Razieh Ghasemi
- Department of Nanotechnology, Jabir Ibn Hayyan Institute, Technical and Vocational Training Organization, Isfahan, Iran
| | - Farshad Darvishi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Morteza Shiri
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran.
| | - Faiq H S Hussain
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University-Erbil, Kurdistan Region, Iraq.
| |
Collapse
|
5
|
Das B, Dahiya A, Chakraborty N, Patel BK. Synthesis of Chromenopyrroles (Azacoumestans) from Functionalized Enones and Alkyl Isocyanoacetates. Org Lett 2023. [PMID: 37410976 DOI: 10.1021/acs.orglett.3c01655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Elegant synthetic strategies for chromenopyrroles (azacoumestans) have been devised via cycloaddition of 2-hydroxychalcone/cyclic enones and alkyl isocyanoacetate, followed by lactonization. Herein, ethyl isocyanoacetate acts as a C-NH-C-C═O synthon contrary to its hitherto applications as a C-NH-C synthon. Subsequently, pentacyclic-fused pyrroles were also constructed from the o-iodo benzoyl chromenopyrroles using the Pd(II) catalyst.
Collapse
Affiliation(s)
- Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati North Guwahati 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati North Guwahati 781039, India
| | - Nikita Chakraborty
- Department of Chemistry, Indian Institute of Technology Guwahati North Guwahati 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati North Guwahati 781039, India
| |
Collapse
|
6
|
Fatahala SS, Mohamed MS, Sabry JY, Mansour YEED. Synthesis Strategies and Medicinal Value of Pyrrole and its Fused Heterocyclic Compounds. Med Chem 2022; 18:1013-1043. [PMID: 35339189 DOI: 10.2174/1573406418666220325141952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
For several decades, interest in pyrrole and pyrrolopyrimidine derivatives increases owing to their biological importance, such as anti-tumor, anti-microbial, anti-inflammatory, anti-diabetic, anti-histaminic, anti-malarial, anti-Parkinson, antioxidant and anti-viral, specially recently against COVID-19. These tremendous biological features motivated scientists to discover more pyrrole and fused pyrrole derivatives, owing to the great importance of the pyrrole nucleus as a pharmacophore in many drugs, and motivated us to present this article, highlighting on the different synthetic pathways of pyrrole and its fused compounds specially pyrrolopyrimidine, as well as their medicinal value from 2017 till 2021.
Collapse
Affiliation(s)
- Samar Said Fatahala
- Pharmaceutical Organic Chemistry department, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, Egypt
| | - Mosaad Sayed Mohamed
- Pharmaceutical Organic Chemistry department, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, Egypt
| | - Jaqueline Youssef Sabry
- Pharmaceutical Organic Chemistry department, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, Egypt
| | - Yara Esam El-Deen Mansour
- Pharmaceutical Organic Chemistry department, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, Egypt
| |
Collapse
|
7
|
Li Y, Ren X, Chen Y, Zhu X, Hao XQ, Song MP. Fe(III)-Catalyzed N-Amidomethylation of Secondary and Primary Anilines with TosMIC. Org Lett 2021; 24:250-255. [PMID: 34931836 DOI: 10.1021/acs.orglett.1c03910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A Fe(III)-catalyzed N-amidomethylation of secondary and primary anilines with p-toluenesulfonylmethyl isocyanide (TosMIC) in water is described. TosMIC plays dual roles as the source of methylene as well as an amidating reagent to form α-amino amides in this multicomponent reaction. The combination of TosMIC and other isocyanides was also investigated to give the desired products in acceptable yields. The current protocol features use of iron catalyst and nontoxic media, broad substrate scope, mild conditions, and operational simplicity.
Collapse
Affiliation(s)
- Yigao Li
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P.R. China
| | - Xiaohuang Ren
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P.R. China
| | - Yi Chen
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P.R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P.R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P.R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P.R. China
| |
Collapse
|