1
|
Saldan I, Moumaneix L, Umer M, Pavlinak D, Rihova M, Kolibalova E, Petrus J, Kallio T, Vandichel M, Macak JM. Palladium Nanocubes with {100} Facets for Hydrogen Evolution Reaction: Synthesis, Experiment and Theory. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408788. [PMID: 39910856 PMCID: PMC11922004 DOI: 10.1002/smll.202408788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/31/2024] [Indexed: 02/07/2025]
Abstract
Spatially separated palladium nanocubes (Pd NCs) terminated by {100} facets are synthesized using direct micelles approach. The stepwise seed-mediated growth of Pd NCs is applied for the first time. The resulting Pd NCs are thoroughly characterized by HR-TEM, XPS, Raman, ATR-FTIR, TGA, and STEM-EDX spectroscopies. Some traces of residual stabilizer (polyvinylpyrrolidone, PVP) attached to the vertices of Pd NCs are identified after the necessary separation-washing procedure, however, it is vital to avoid aggregation of the NCs. Pd NCs are subsequently and uniformly loaded on Vulcan carbon (≈20 wt.%) for the electrochemical hydrogen cycling. By post-mortem characterizations, it is revealed that their shape and size remained very stable after all electrochemical experiments. However, a strong effect of the NCs size on their hydrogen interaction is revealed. Hydrogen absorption capacity, measured as the H:Pd ratio, ranges from 0.28 to 0.48, while hydrogen evolution and oxidation reactions (HER and HOR) kinetics decrease from 15.5 to 4.6 mA.mg Pd -1 between ≈15 and 34 nm of Pd NCs, respectively. Theoretical calculations further reveal that adsorption of H atoms and their penetration into the Pd lattice tailors the NCs electronic structure, which in turn controls the kinetics of HER, experimentally observed by the electrochemical tests. This work may pave the way to the design of highly active electrocatalysts for efficient HER stable for a long reactive time. In particular, obtained results might be transferred to active Pd-alloy-based NCs terminated by {100} facets.
Collapse
Affiliation(s)
- Ivan Saldan
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
| | - Lilian Moumaneix
- Department of Chemistry and Materials Science, School of Engineering, Aalto University, Espoo, 02150, Finland
| | - Muhammad Umer
- School of Chemical Sciences and Chemical Engineering, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - David Pavlinak
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
| | - Martina Rihova
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
| | - Eva Kolibalova
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
| | - Josef Petrus
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
| | - Tanja Kallio
- Department of Chemistry and Materials Science, School of Engineering, Aalto University, Espoo, 02150, Finland
| | - Matthias Vandichel
- School of Chemical Sciences and Chemical Engineering, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Jan M Macak
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, Pardubice, 530 02, Czech Republic
| |
Collapse
|
2
|
Teli AM, Mane SM, Mishra RK, Jeon W, Shin JC. Unlocking the Potential of Ti 3C 2T x MXene: Present Trends and Future Developments of Gas Sensing. MICROMACHINES 2025; 16:159. [PMID: 40047593 PMCID: PMC11857239 DOI: 10.3390/mi16020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 03/09/2025]
Abstract
In recent years, the need for future developments in sensor technology has arisen out of the changing landscape, such as pollution monitoring, industrial safety, and healthcare. MXenes, a 2D class of transition metal carbides, nitrides, and carbonitrides, have emerged as a particularly promising group in part due to their exceptionally high conductivity, large area, and tunable surface chemistry. Proposed future research directions, including material modification and novel sensor designs, are presented to maximize Ti3C2Tx MXene-based sensors for various gas sensing applications. While recent progress in Ti3C2Tx MXene-based gas sensors is reviewed, we consolidate their material properties, fabrication strategy, and sensing mechanisms. Further, the significant progress on the synthesis and applications of Ti3C2Tx MXene-based gas sensors, as well as the innovative technologies developed, will be discussed in detail. Interestingly, the high sensitivity, selectivity, and quick response times identified in recent studies are discussed, with specificity and composite formation highlighted to have a significant influence on sensor performance. In addition, this review highlights the limitations witnessed in real-life implementability, including stability, the possibility of achieving reproducible results, and interaction with currently available technologies. Prospects for further work are considered, emphasizing increased production scale, new techniques for synthesis, and new application areas for Ti3C2Tx MXenes, including electronic nose and environmental sensing. Contemplating the existing works, further directions and the development framework for Ti3C2Tx MXene-based gas sensors are discussed.
Collapse
Affiliation(s)
- Aviraj M. Teli
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| | - Sagar M. Mane
- Department of Fiber System Engineering, Yeungnam University, 280 Dehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Rajneesh Kumar Mishra
- Department of Physics, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Wookhee Jeon
- Department of Semiconductor, Convergence Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi, Republic of Korea;
| | - Jae Cheol Shin
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| |
Collapse
|
3
|
Ur Rehman A, Akram Khan S, Mansha M, Iqbal S, Khan M, Mustansar Abbas S, Ali S. MXenes and MXene-Based Metal Hydrides for Solid-State Hydrogen Storage: A Review. Chem Asian J 2024; 19:e202400308. [PMID: 38880773 DOI: 10.1002/asia.202400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/18/2024]
Abstract
Hydrogen-driven energy is fascinating among the everlasting energy sources, particularly for stationary and onboard transportation applications. Efficient hydrogen storage presents a key challenge to accomplishing the sustainability goals of hydrogen economy. In this regard, solid-state hydrogen storage in nanomaterials, either physically or chemically adsorbed, has been considered a safe path to establishing sustainability goals. Though metal hydrides have been extensively explored, they fail to comply with the set targets for practical utilization. Recently, MXenes, both in bare form and hybrid state with metal hydrides, have proven their flair in ascertaining the hydrides' theoretical and experimental hydrogen storage capabilities far beyond the fancy materials and current state-of-the-art technologies. This review encompasses the significant accomplishments achieved by MXenes (primarily in 2019-2024) for enhancing the hydrogen storage performance of various metal hydride materials such as MgH2, AlH3, Mg(BH4)2, LiBH4, alanates, and composite hydrides. It also discusses the bottlenecks of metal hydrides for hydrogen storage, the potential use of MXenes hybrids, and their challenges, such as reversibility, H2 losses, slow kinetics, and thermodynamic barriers. Finally, it concludes with a detailed roadmap and recommendations for mechanistic-driven future studies propelling toward a breakthrough in solid material-driven hydrogen storage using cost-effective, efficient, and long-lasting solutions.
Collapse
Affiliation(s)
- Ata Ur Rehman
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Shahid Iqbal
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Majad Khan
- Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Syed Mustansar Abbas
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Nanoscience and Technology Department, National Center for Physics, Islamabad, 45320, Pakistan
| | - Shahid Ali
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Dutta T, Noushin T, Tabassum S, Mishra SK. Road Map of Semiconductor Metal-Oxide-Based Sensors: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:6849. [PMID: 37571634 PMCID: PMC10422562 DOI: 10.3390/s23156849] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/22/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Identifying disease biomarkers and detecting hazardous, explosive, flammable, and polluting gases and chemicals with extremely sensitive and selective sensor devices remains a challenging and time-consuming research challenge. Due to their exceptional characteristics, semiconducting metal oxides (SMOxs) have received a lot of attention in terms of the development of various types of sensors in recent years. The key performance indicators of SMOx-based sensors are their sensitivity, selectivity, recovery time, and steady response over time. SMOx-based sensors are discussed in this review based on their different properties. Surface properties of the functional material, such as its (nano)structure, morphology, and crystallinity, greatly influence sensor performance. A few examples of the complicated and poorly understood processes involved in SMOx sensing systems are adsorption and chemisorption, charge transfers, and oxygen migration. The future prospects of SMOx-based gas sensors, chemical sensors, and biological sensors are also discussed.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, IIEST Shibpur, Howrah 711103, West Bengal, India;
| | - Tanzila Noushin
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Shawana Tabassum
- Department of Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA;
| | - Satyendra K. Mishra
- Danish Offshore Technology Center, Technical University of Denmark, 2800 Lyngby, Denmark
- SRCOM, Centre Technologic de Telecomunicacions de Catalunya, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
5
|
Patil SA, Marichev KO, Patil SA, Bugarin A. Advances in the synthesis and applications of 2D MXene-metal nanomaterials. SURFACES AND INTERFACES 2023; 38:102873. [PMID: 37614222 PMCID: PMC10443947 DOI: 10.1016/j.surfin.2023.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
MXenes, two-dimensional (2D) materials that consist of transition metal carbides, nitrides and/or carbonitrides, have recently attracted much attention in energy-related and biomedicine fields. These materials have substantial advantages over traditional carbon graphenes: they possess high conductivity, high strength, excellent chemical and mechanical stability, and superior hydrophilic properties. Furthermore, diverse functional groups such as -OH, -O, and -F located on the surface of MXenes aid the immobilization of numerous noble metal nanoparticles (NP). Therefore, 2D MXene composite materials have become an important and convenient option of being applied as support materials in many fields. In this review, the advances in the synthesis (including morphology studies, characterization, physicochemical properties) and applications of the currently known 2D MXene-metal (Pd, Ag, Au, and Cu) nanomaterials are summarized based on critical analysis of the literature in this field. Importantly, the current state of the art, challenges, and the potential for future research on broad applications of MXene-metal nanomaterials have been discussed.
Collapse
Affiliation(s)
- Siddappa A. Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
- Department of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| | | | - Shivaputra A. Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Alejandro Bugarin
- Department of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| |
Collapse
|
6
|
Simonenko EP, Simonenko NP, Mokrushin AS, Simonenko TL, Gorobtsov PY, Nagornov IA, Korotcenkov G, Sysoev VV, Kuznetsov NT. Application of Titanium Carbide MXenes in Chemiresistive Gas Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:850. [PMID: 36903729 PMCID: PMC10004978 DOI: 10.3390/nano13050850] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/14/2023]
Abstract
The titanium carbide MXenes currently attract an extreme amount of interest from the material science community due to their promising functional properties arising from the two-dimensionality of these layered structures. In particular, the interaction between MXene and gaseous molecules, even at the physisorption level, yields a substantial shift in electrical parameters, which makes it possible to design gas sensors working at RT as a prerequisite to low-powered detection units. Herein, we consider to review such sensors, primarily based on Ti3C2Tx and Ti2CTx crystals as the most studied ones to date, delivering a chemiresistive type of signal. We analyze the ways reported in the literature to modify these 2D nanomaterials for (i) detecting various analyte gases, (ii) improving stability and sensitivity, (iii) reducing response/recovery times, and (iv) advancing a sensitivity to atmospheric humidity. The most powerful approach based on designing hetero-layers of MXenes with other crystals is discussed with regard to employing semiconductor metal oxides and chalcogenides, noble metal nanoparticles, carbon materials (graphene and nanotubes), and polymeric components. The current concepts on the detection mechanisms of MXenes and their hetero-composites are considered, and the background reasons for improving gas-sensing functionality in the hetero-composite when compared with pristine MXenes are classified. We formulate state-of-the-art advances and challenges in the field while proposing some possible solutions, in particular via employing a multisensor array paradigm.
Collapse
Affiliation(s)
- Elizaveta P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Artem S. Mokrushin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Tatiana L. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Philipp Yu. Gorobtsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Ilya A. Nagornov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, 2009 Chisinau, Moldova
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya str., 410054 Saratov, Russia
| | - Nikolay T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|
7
|
Zhao Z, Qian X, Zhu H, Miao Y, Ye H. Synthesis of Accordion‐like Ti
3
CN MXene and its Structural Stability in Aqueous Solutions and Organic Solvents. ChemistrySelect 2022. [DOI: 10.1002/slct.202104176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zefeng Zhao
- School of Materials Science & Engineering Zhejiang Sci-Tech University Hangzhou 310018 P.R. China
- School of Engineering Lishui University Lishui 323000 Zhejiang P.R. China
| | - Xukun Qian
- School of Materials Science & Engineering Zhejiang Sci-Tech University Hangzhou 310018 P.R. China
- School of Engineering Lishui University Lishui 323000 Zhejiang P.R. China
| | - Hailin Zhu
- School of Materials Science & Engineering Zhejiang Sci-Tech University Hangzhou 310018 P.R. China
| | - Yigao Miao
- School of Engineering Lishui University Lishui 323000 Zhejiang P.R. China
| | - Hua Ye
- School of Engineering Lishui University Lishui 323000 Zhejiang P.R. China
| |
Collapse
|
8
|
Nahirniak S, Saruhan B. MXene Heterostructures as Perspective Materials for Gas Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:972. [PMID: 35161718 PMCID: PMC8838671 DOI: 10.3390/s22030972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
This paper provides a summary of the recent developments with promising 2D MXene-related materials and gives an outlook for further research on gas sensor applications. The current synthesis routes that are provided in the literature are summarized, and the main properties of MXene compounds have been highlighted. Particular attention has been paid to safe and non-hazardous synthesis approaches for MXene production as 2D materials. The work so far on sensing properties of pure MXenes and MXene-based heterostructures has been considered. Significant improvement of the MXenes sensing performances not only relies on 2D production but also on the formation of MXene heterostructures with other 2D materials, such as graphene, and with metal oxides layers. Despite the limited number of research papers published in this area, recommendations on new strategies to advance MXene heterostructures and composites for gas sensing applications can be driven.
Collapse
Affiliation(s)
- Svitlana Nahirniak
- German Aerospace Center, Department of High-Temperature and Functional Coatings, Institute of Materials Research, Linder Hoehe, 51147 Cologne, Germany;
| | | |
Collapse
|
9
|
Qin T, Wang Z, Wang Y, Besenbacher F, Otyepka M, Dong M. Recent Progress in Emerging Two-Dimensional Transition Metal Carbides. NANO-MICRO LETTERS 2021; 13:183. [PMID: 34417663 PMCID: PMC8379312 DOI: 10.1007/s40820-021-00710-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/25/2021] [Indexed: 05/17/2023]
Abstract
As a new member in two-dimensional materials family, transition metal carbides (TMCs) have many excellent properties, such as chemical stability, in-plane anisotropy, high conductivity and flexibility, and remarkable energy conversation efficiency, which predispose them for promising applications as transparent electrode, flexible electronics, broadband photodetectors and battery electrodes. However, up to now, their device applications are in the early stage, especially because their controllable synthesis is still a great challenge. This review systematically summarized the state-of-the-art research in this rapidly developing field with particular focus on structure, property, synthesis and applicability of TMCs. Finally, the current challenges and future perspectives are outlined for the application of 2D TMCs.
Collapse
Affiliation(s)
- Tianchen Qin
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Yuqing Wang
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus, Denmark
| | | | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 77146, Olomouc, Czech Republic
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
10
|
Abstract
Since MXene (a two-dimensional material) was discovered in 2011, it has been favored in all aspects due to its rich surface functional groups, large specific surface area, high conductivity, large porosity, rich organic bonds, and high hydrophilicity. In this paper, the preparation of MXene is introduced first. HF etching was the first etching method for MXene; however, HF is corrosive, resulting in the development of the in situ HF method (fluoride + HCl). Due to the harmful effects of fluorine terminal on the performance of MXene, a fluorine-free preparation method was developed. The increase in interlayer spacing brought about by adding an intercalator can affect MXene’s performance. The usual preparation methods render MXene inevitably agglomerate and the resulting yields are insufficient. Many new preparation methods were researched in order to solve the problems of agglomeration and yield. Secondly, the application of MXene-based materials in gas sensors was discussed. MXene is often regarded as a flexible gas sensor, and the detection of ppb-level acetone at room temperature was observed for the first time. After the formation of composite materials, the increasing interlayer spacing and the specific surface area increased the number of active sites of gas adsorption and the gas sensitivity performance improved. Moreover, this paper discusses the gas-sensing mechanism of MXene. The gas-sensing mechanism of metallic MXene is affected by the expansion of the lamellae and will be doped with H2O and oxygen during the etching process in order to become a p-type semiconductor. A p-n heterojunction and a Schottky barrier forms due to combinations with other semiconductors; thus, the gas sensitivities of composite materials are regulated and controlled by them. Although there are only several reports on the application of MXene materials to gas sensors, MXene and its composite materials are expected to become materials that can effectively detect gases at room temperature, especially for the detection of NH3 and VOC gas. Finally, the challenges and opportunities of MXene as a gas sensor are discussed.
Collapse
|
11
|
Xu D, Li M, Xu H, Yu J, Wang Y, Zhang P. N,S-doped carbon quantum dots as a fluorescent probe for palladium(II) ions via Förster resonance energy transfer. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|