1
|
Seifali Abbas-Abadi M, Tomme B, Goshayeshi B, Mynko O, Wang Y, Roy S, Kumar R, Baruah B, De Clerck K, De Meester S, D’hooge DR, Van Geem KM. Advancing Textile Waste Recycling: Challenges and Opportunities Across Polymer and Non-Polymer Fiber Types. Polymers (Basel) 2025; 17:628. [PMID: 40076120 PMCID: PMC11902667 DOI: 10.3390/polym17050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/31/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
The growing environmental impact of textile waste, fueled by the rapid rise in global fiber production, underscores the urgent need for sustainable end-of-life solutions. This review explores cutting-edge pathways for textile waste management, spotlighting innovations that reduce reliance on incineration and landfilling while driving material circularity. It highlights advancements in collection, sorting, and pretreatment technologies, as well as both established and emerging recycling methods. Smart collection systems utilizing tags and sensors show great promise in streamlining logistics by automating pick-up routes and transactions. For sorting, automated technologies like near-infrared and hyperspectral imaging lead the way in accurate and scalable fiber separation. Automated disassembly techniques are effective at removing problematic elements, though other pretreatments, such as color and finish removal, still need to be customized for specific waste streams. Mechanical fiber recycling is ideal for textiles with strong mechanical properties but has limitations, particularly with blended fabrics, and cannot be repeated endlessly. Polymer recycling-through melting or dissolving waste polymers-produces higher-quality recycled materials but comes with high energy and solvent demands. Chemical recycling, especially solvolysis and pyrolysis, excels at breaking down synthetic polymers like polyester, with the potential to yield virgin-quality monomers. Meanwhile, biological methods, though still in their infancy, show promise for recycling natural fibers like cotton and wool. When other methods are not viable, gasification can be used to convert waste into synthesis gas. The review concludes that the future of sustainable textile recycling hinges on integrating automated sorting systems and advancing solvent-based and chemical recycling technologies. These innovations, supported by eco-design principles, progressive policies, and industry collaboration, are essential to building a resilient, circular textile economy.
Collapse
Affiliation(s)
- Mehrdad Seifali Abbas-Abadi
- Laboratory for Chemical Technology, Department of Materials, Textiles, and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 121, 9052 Zwijnaarde, Belgium; (M.S.A.-A.); (B.G.); (O.M.); (Y.W.); (S.R.); (R.K.); (B.B.); (D.R.D.)
- Synpet Technology, R&D Center, Avenue Louise 523, 1050 Brussels, Belgium
| | - Brecht Tomme
- Centre for Textile Science and Engineering, Department of Materials, Textiles, and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 70a, 9052 Zwijnaarde, Belgium; (B.T.); (K.D.C.)
| | - Bahman Goshayeshi
- Laboratory for Chemical Technology, Department of Materials, Textiles, and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 121, 9052 Zwijnaarde, Belgium; (M.S.A.-A.); (B.G.); (O.M.); (Y.W.); (S.R.); (R.K.); (B.B.); (D.R.D.)
- Laboratory of Petrochemical Technology (LPT), Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Oleksii Mynko
- Laboratory for Chemical Technology, Department of Materials, Textiles, and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 121, 9052 Zwijnaarde, Belgium; (M.S.A.-A.); (B.G.); (O.M.); (Y.W.); (S.R.); (R.K.); (B.B.); (D.R.D.)
| | - Yihan Wang
- Laboratory for Chemical Technology, Department of Materials, Textiles, and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 121, 9052 Zwijnaarde, Belgium; (M.S.A.-A.); (B.G.); (O.M.); (Y.W.); (S.R.); (R.K.); (B.B.); (D.R.D.)
| | - Sangram Roy
- Laboratory for Chemical Technology, Department of Materials, Textiles, and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 121, 9052 Zwijnaarde, Belgium; (M.S.A.-A.); (B.G.); (O.M.); (Y.W.); (S.R.); (R.K.); (B.B.); (D.R.D.)
| | - Rohit Kumar
- Laboratory for Chemical Technology, Department of Materials, Textiles, and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 121, 9052 Zwijnaarde, Belgium; (M.S.A.-A.); (B.G.); (O.M.); (Y.W.); (S.R.); (R.K.); (B.B.); (D.R.D.)
| | - Bhargav Baruah
- Laboratory for Chemical Technology, Department of Materials, Textiles, and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 121, 9052 Zwijnaarde, Belgium; (M.S.A.-A.); (B.G.); (O.M.); (Y.W.); (S.R.); (R.K.); (B.B.); (D.R.D.)
| | - Karen De Clerck
- Centre for Textile Science and Engineering, Department of Materials, Textiles, and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 70a, 9052 Zwijnaarde, Belgium; (B.T.); (K.D.C.)
| | - Steven De Meester
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Ghent University, 8500 Kortrijk, Belgium;
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Department of Materials, Textiles, and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 121, 9052 Zwijnaarde, Belgium; (M.S.A.-A.); (B.G.); (O.M.); (Y.W.); (S.R.); (R.K.); (B.B.); (D.R.D.)
- Centre for Textile Science and Engineering, Department of Materials, Textiles, and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 70a, 9052 Zwijnaarde, Belgium; (B.T.); (K.D.C.)
| | - Kevin M. Van Geem
- Laboratory for Chemical Technology, Department of Materials, Textiles, and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 121, 9052 Zwijnaarde, Belgium; (M.S.A.-A.); (B.G.); (O.M.); (Y.W.); (S.R.); (R.K.); (B.B.); (D.R.D.)
| |
Collapse
|
2
|
Ko K, Lundberg DJ, Johnson AM, Johnson JA. Mechanism-Guided Discovery of Cleavable Comonomers for Backbone Deconstructable Poly(methyl methacrylate). J Am Chem Soc 2024; 146:9142-9154. [PMID: 38526229 DOI: 10.1021/jacs.3c14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development of cleavable comonomers (CCs) with suitable copolymerization reactivity paves the way for the introduction of backbone deconstructability into polymers. Recent advancements in thionolactone-based CCs, exemplified by dibenzo[c,e]-oxepine-5(7H)-thione (DOT), have opened promising avenues for the selective deconstruction of multiple classes of vinyl polymers, including polyacrylates, polyacrylamides, and polystyrenics. To date, however, no thionolactone CC has been shown to copolymerize with methacrylates to an appreciable extent to enable polymer deconstruction. Here, we overcome this challenge through the design of a new class of benzyl-functionalized thionolactones (bDOTs). Guided by detailed mechanistic analyses, we find that the introduction of radical-stabilizing substituents to bDOTs enables markedly increased and tunable copolymerization reactivity with methyl methacrylate (MMA). Through iterative optimizations of the molecular structure, a specific bDOT, F-p-CF3PhDOT, is discovered to copolymerize efficiently with MMA. High molar mass deconstructable PMMA-based copolymers (dPMMA, Mn > 120 kDa) with low percentages of F-p-CF3PhDOT (1.8 and 3.8 mol%) are prepared using industrially relevant bulk free radical copolymerization conditions. The thermomechanical properties of dPMMA are similar to PMMA; however, the former is shown to degrade into low molar mass fragments (<6.5 kDa) under mild aminolysis conditions. This work presents the first example of a radical ring-opening CC capable of nearly random copolymerization with MMA without the possibility of cross-linking and provides a workflow for the mechanism-guided design of deconstructable copolymers in the future.
Collapse
Affiliation(s)
- Kwangwook Ko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alayna M Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Reyes P, Edeleva M, D’hooge DR, Cardon L, Cornillie P. Multicomponent Acrylic Formulation Design for Corrosion Casting with Controlled Mechanical Properties. Polymers (Basel) 2023; 15:3236. [PMID: 37571130 PMCID: PMC10422545 DOI: 10.3390/polym15153236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Corrosion casting based on the curing of acrylic resins enables one to create casts as replicas of body systems, enhancing our knowledge of veterinary medicine. The identification of the optimal chemical formulations as well as the processing conditions, the delivery of good control during the liquid state and the excellent macroscopic properties during solidification and after use are remaining challenges. In the present work, based on the identification of more qualitative trends, it is demonstrated that multicomponent comonomer mixtures are interesting materials that can be used to expand the range of mechanical properties and can specifically result in a better balance between stiffness and flexibility while guaranteeing dimensional stability. Emphasis is put on a large pool of formulations in the testing phase to then perform a detailed mechanical flexural analysis for the most promising cases during a more rigorous testing phase, accounting for a new pragmatic protocol for the pot life. This protocol consists of a vial-based turning test and a measurement of the viscosity variation up to 1000 mPa∙s and highlights the complex interplay between the overall initial concentrations and the impact of the absence of mixing once the system is at rest. It is demonstrated that the use of only low-molar-mass crosslinkers should be avoided, and overall, an intermediate amount of crosslinkers is recommendable.
Collapse
Affiliation(s)
- Pablo Reyes
- Laboratory of Veterinary Morphology, Faculty of Veterinary Sciences, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
- Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 130, 9052 Zwijnaarde, Belgium; (M.E.); (L.C.)
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Zwijnaarde, Belgium
| | - Mariya Edeleva
- Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 130, 9052 Zwijnaarde, Belgium; (M.E.); (L.C.)
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Zwijnaarde, Belgium
- Centre for Textiles Science and Engineering (CTSE), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 70A, 9052 Zwijnaarde, Belgium
| | - Ludwig Cardon
- Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 130, 9052 Zwijnaarde, Belgium; (M.E.); (L.C.)
| | - Pieter Cornillie
- Laboratory of Veterinary Morphology, Faculty of Veterinary Sciences, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| |
Collapse
|
4
|
Gkaliou K, Benedini L, Sárossy Z, Dalsgaard Jensen C, Henriksen UB, Daugaard AE. Recycled PMMA prepared directly from crude MMA obtained from thermal depolymerization of mixed PMMA waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:191-199. [PMID: 37059043 DOI: 10.1016/j.wasman.2023.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Recycled PMMA was prepared by directly polymerizing crude pyrolysis oils from lab-scale pyrolysis of collected industrial waste PMMA. The pyrolysis oils consisted mainly of methyl methacrylate (MMA, >85%), while the type and number of by-products from the thermal process were assigned through GC-MS analysis showing a clear correlation to the pyrolysis temperature. By-products can be removed by distillation; however, directly employing the crude oils to prepare PMMA through solution, suspension, emulsion, or casting polymerization was investigated to assess the potential for omitting this costly step. It was found that the crude pyrolysis oils could be polymerized efficiently via solution, emulsion, and casting polymerization to produce a polymer similar to the PMMA prepared from a pristine monomer. The impurities in the PMMAs prepared from the crude mixtures were investigated by extraction analyses followed by screening by GC-MS. In the case of casting polymerization, the GC-MS analysis, as expected, revealed various residual by-products, while solution and emulsion polymerization showed only very few impurities, mainly originating from the polymerization and not the feed material. Additional purification of the crude pyrolysis oils would be required for applications in casting polymerization. In contrast, direct polymerization by emulsion or solution polymerization is considered applicable for producing pristine PMMA from crude waste PMMA pyrolysis oil.
Collapse
Affiliation(s)
- Kyriaki Gkaliou
- Technical University of Denmark, Department of Chemical and Biochemical Engineering, The Danish Polymer Centre, Kongens Lyngby 2800, Denmark.
| | - Lidia Benedini
- Technical University of Denmark, Department of Chemical and Biochemical Engineering, CHEC Research Centre, Kongens Lyngby 2800, Denmark
| | - Zsuzsa Sárossy
- Technical University of Denmark, Department of Chemical and Biochemical Engineering, CHEC Research Centre, Kongens Lyngby 2800, Denmark
| | - Claus Dalsgaard Jensen
- Technical University of Denmark, Department of Chemical and Biochemical Engineering, CHEC Research Centre, Kongens Lyngby 2800, Denmark
| | - Ulrik B Henriksen
- Technical University of Denmark, Department of Chemical and Biochemical Engineering, CHEC Research Centre, Kongens Lyngby 2800, Denmark
| | - Anders E Daugaard
- Technical University of Denmark, Department of Chemical and Biochemical Engineering, The Danish Polymer Centre, Kongens Lyngby 2800, Denmark
| |
Collapse
|
5
|
Ramey EE, Whitman EL, Buller CE, Tucker JR, Jolly CS, Oberle KG, Becksvoort AJ, Turlington M, Turlington CR. A Biodegradable, Polymer-Supported Oxygen Atom Transfer Reagent. Polymers (Basel) 2023; 15:polym15092052. [PMID: 37177199 PMCID: PMC10181130 DOI: 10.3390/polym15092052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Biodegradable polymers are desirable to mitigate the environmental impact of plastic waste in the environment. Over the past several decades, the development of organocatalytic ring-opening polymerization (OROP) has made the synthesis of many new types of biodegradable polymers possible. In this research article, the first example of an oxygen atom transfer reagent pendant on a biodegradable polymer backbone is reported. The monomers for the polycarbonate backbone are sourced from the biodegradable 2,2-bis(hydroxymethyl) propionic acid molecule, and an iodoaryl group is installed pendant to the cyclic monomer for post-polymerization modification into an iodosylaryl oxygen atom transfer reagent. The key I-O bond is characterized by XPS spectroscopy, and a test reaction to triphenylphosphine demonstrates the ability of the polymer to engage in an oxygen atom transfer reaction with a substrate.
Collapse
Affiliation(s)
- Erin E Ramey
- Department of Chemistry and Biochemistry, Hope College, Holland, MI 49422, USA
| | - Elizabeth L Whitman
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA 30149, USA
| | - Cole E Buller
- Department of Chemistry and Biochemistry, Hope College, Holland, MI 49422, USA
| | - James R Tucker
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA 30149, USA
| | - Charles S Jolly
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA 30149, USA
| | - Kjersti G Oberle
- Department of Chemistry and Biochemistry, Hope College, Holland, MI 49422, USA
| | - Austin J Becksvoort
- Department of Chemistry and Biochemistry, Hope College, Holland, MI 49422, USA
| | - Mark Turlington
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA 30149, USA
| | | |
Collapse
|
6
|
Molecular Pathways for Polymer Degradation during Conventional Processing, Additive Manufacturing, and Mechanical Recycling. Molecules 2023; 28:molecules28052344. [PMID: 36903589 PMCID: PMC10004996 DOI: 10.3390/molecules28052344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The assessment of the extent of degradation of polymer molecules during processing via conventional (e.g., extrusion and injection molding) and emerging (e.g., additive manufacturing; AM) techniques is important for both the final polymer material performance with respect to technical specifications and the material circularity. In this contribution, the most relevant (thermal, thermo-mechanical, thermal-oxidative, hydrolysis) degradation mechanisms of polymer materials during processing are discussed, addressing conventional extrusion-based manufacturing, including mechanical recycling, and AM. An overview is given of the most important experimental characterization techniques, and it is explained how these can be connected with modeling tools. Case studies are incorporated, dealing with polyesters, styrene-based materials, and polyolefins, as well as the typical AM polymers. Guidelines are formulated in view of a better molecular scale driven degradation control.
Collapse
|
7
|
Free-radical polymerization in a droplet with initiation at the interface. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
8
|
Le Dot M, Giacoletto N, Morlet-Savary F, Graff B, Monnier V, Gigmes D, Nechab M, Dumur F, Gerard P, Lalevée J. Synergistic Approach of Type I Hybrid Complexes for highly efficient Metal-based Initiating Strategies: Toward low energy-consuming polymerization for Thermoplastic Composite Implementation. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Kordes BR, Ascherl L, Rüdinger C, Melchin T, Agarwal S. Competition between Hydrolysis and Radical Ring-Opening Polymerization of MDO in Water. Who Makes the Race? Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Laura Ascherl
- Wacker Chemie AG, Hanns-Seidel-Platz 4, 81737 München, Germany
| | | | - Timo Melchin
- Wacker Chemie AG, Hanns-Seidel-Platz 4, 81737 München, Germany
| | - Seema Agarwal
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
10
|
Suzuki Y, Onozato S, Shinagawa Y, Matsumoto A. Microporous Structure Formation of Poly(methyl methacrylate) via Polymerization-Induced Phase Separation in the Presence of Poly(ethylene glycol). ACS OMEGA 2022; 7:38933-38941. [PMID: 36340152 PMCID: PMC9631874 DOI: 10.1021/acsomega.2c04690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
It has been demonstrated that nano- or micro-structured polymeric materials have huge potential as advanced materials. However, most of the current fabricating methods have limitations either in cost or in size. Here, we investigate the bulk polymerization of methyl methacrylate in the presence of poly(ethylene glycol) (PEG). We found that phase separation occurs during bulk polymerization. After removal of PEG via sonication, microscopic structures of poly(methyl methacrylate), including porous structures, co-continuous monolith structures, or particle aggregation structures, are formed. These structures can be controlled by the amount of PEG added and the reaction temperature. The results are summarized in phase diagrams. The addition of PEG significantly affects the reaction kinetics. Phase separation is coupled with the reaction acceleration known as the Trommsdorff effect. As a result, the reaction completes in a shorter time when the PEG amount is higher. We demonstrate surface coating to fabricate an amphiphobic surface, repelling both water and oil. The methods presented here have the potential to fabricate microscopic structures in large areas cost-effectively.
Collapse
Affiliation(s)
- Yasuhito Suzuki
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shodai Onozato
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yuya Shinagawa
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Akikazu Matsumoto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
11
|
Wang J, Wang T, Luo Z, Zhou Y. Analytical and Numerical Simulations of Depolymerization Based on Discrete Model: A Chain‐end Scission Scenario. AIChE J 2022. [DOI: 10.1002/aic.17854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiang Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai PR China
| | - Tian‐Tian Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai PR China
| | - Zheng‐Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai PR China
| | - Yin‐Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai PR China
| |
Collapse
|
12
|
Russo V, Grénman H, Salmi T, Tesser R. A novel approach to inulin depolymerization: A Monte Carlo based model. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Multi-Scale Modeling of Plastic Waste Gasification: Opportunities and Challenges. MATERIALS 2022; 15:ma15124215. [PMID: 35744275 PMCID: PMC9228121 DOI: 10.3390/ma15124215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023]
Abstract
Among the different thermo-chemical recycling routes for plastic waste valorization, gasification is one of the most promising, converting plastic waste into syngas (H2+CO) and energy in the presence of an oxygen-rich gas. Plastic waste gasification is associated with many different complexities due to the multi-scale nature of the process, the feedstock complexity (mixed polyolefins with different contaminations), intricate reaction mechanisms, plastic properties (melting behavior and molecular weight distribution), and complex transport phenomena in a multi-phase flow system. Hence, creating a reliable model calls for an extensive understanding of the phenomena at all scales, and more advanced modeling approaches than those applied today are required. Indeed, modeling of plastic waste gasification (PWG) is still in its infancy today. Our review paper shows that the thermophysical properties are rarely properly defined. Challenges in this regard together with possible methodologies to decently define these properties have been elaborated. The complexities regarding the kinetic modeling of gasification are numerous, compared to, e.g., plastic waste pyrolysis, or coal and biomass gasification, which are elaborated in this work along with the possible solutions to overcome them. Moreover, transport limitations and phase transformations, which affect the apparent kinetics of the process, are not usually considered, while it is demonstrated in this review that they are crucial in the robust prediction of the outcome. Hence, possible approaches in implementing available models to consider these limitations are suggested. Finally, the reactor-scale phenomena of PWG, which are more intricate than the similar processes-due to the presence of molten plastic-are usually simplified to the gas-solid systems, which can result in unreliable modeling frameworks. In this regard, an opportunity lies in the increased computational power that helps improve the model's precision and allows us to include those complexities within the multi-scale PWG modeling. Using the more accurate modeling methodologies in combination with multi-scale modeling approaches will, in a decade, allow us to perform a rigorous optimization of the PWG process, improve existing and develop new gasifiers, and avoid fouling issues caused by tar.
Collapse
|
14
|
De Keer L, Edeleva M, Figueira FL, Reyes P, D'hooge DR, Van Steenberge PH. Procedures and Guidelines for Inputting and Output Smoothening of Kinetic Monte Carlo Distributions. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202100580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lies De Keer
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | - Mariya Edeleva
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | - Freddy L. Figueira
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | - Pablo Reyes
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
- Ghent University Centre for Textile Science and Engineering Technologiepark 70a Gent B‐9052 Belgium
| | - Paul H.M. Van Steenberge
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| |
Collapse
|
15
|
Arraez FJ, Xu X, Edeleva M, Van Steenberge PHM, Marien YW, Jerca VV, Hoogenboom R, D'hooge DR. Differences and similarities between mono-, bi- or tetrafunctional initiated cationic ring-opening polymerization of 2-oxazolines. Polym Chem 2022. [DOI: 10.1039/d1py01471d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cationic ring-opening polymerization (CROP) is an interesting synthesis technique to obtain well-defined polymers with narrow molar mass distribution (MMD).
Collapse
Affiliation(s)
- Francisco J. Arraez
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Xiaowen Xu
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Mariya Edeleva
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Paul H. M. Van Steenberge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Yoshi W. Marien
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Valentin-Victor Jerca
- Centre of Organic Chemistry “Costin D. Nenitzescu” Romanian Academy, Bucharest, Romania
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70A, B-9052 Ghent, Belgium
| |
Collapse
|
16
|
De Smit K, Wieme T, Marien YW, Van Steenberge PHM, D'hooge DR, Edeleva M. Multi-scale reactive extrusion modelling approaches to design polymer synthesis, modification and mechanical recycling. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00556a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactive extrusion (REX) is an important processing and production technique with applications in the field of polymer synthesis, modification and recycling.
Collapse
Affiliation(s)
- Kyann De Smit
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Tom Wieme
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
- Centre for Polymer and Material Technologies (CPMT), Ghent University, Technologiepark 130, 9052 Ghent, Belgium
| | - Yoshi W. Marien
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Paul H. M. Van Steenberge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
- Centre for Textile Science and Engineering (CTSE), Ghent University, Technologiepark 70a, 9052 Ghent, Belgium
| | - Mariya Edeleva
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| |
Collapse
|
17
|
Conka R, Marien Y, Van Steenberge P, Hoogenboom R, D'hooge DR. A unified kinetic Monte Carlo approach to evaluate (a)symmetric block and gradient copolymers with linear and branched chains illustrated for poly(2-oxazoline)s. Polym Chem 2022. [DOI: 10.1039/d1py01391b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of well-defined gradient, block-gradient and di-block copolymers with both asymmetric and symmetric compositions considering hydrophilic and hydrophobic monomer units is relevant for application fields, such as drug/gene delivery...
Collapse
|
18
|
Feuerpfeil A, Drache M, Jantke LA, Melchin T, Rodríguez-Fernández J, Beuermann S. Modeling Semi-Batch Vinyl Acetate Polymerization Processes. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andreas Feuerpfeil
- Clausthal University of Technology, Institute of Technical Chemistry, Arnold-Sommerfeld-Straße 4, 38678 Clausthal-Zellerfeld, Germany
| | - Marco Drache
- Clausthal University of Technology, Institute of Technical Chemistry, Arnold-Sommerfeld-Straße 4, 38678 Clausthal-Zellerfeld, Germany
| | | | - Timo Melchin
- Wacker Chemie AG, Johannes-Hess-Str. 24, 84489 Burghausen, Germany
| | | | - Sabine Beuermann
- Clausthal University of Technology, Institute of Technical Chemistry, Arnold-Sommerfeld-Straße 4, 38678 Clausthal-Zellerfeld, Germany
| |
Collapse
|
19
|
López‐Domínguez P, Carranco‐Hernández NM, Vivaldo‐Lima E. Kinetic Modeling of Ring Opening Polymerization of Lactones under Microwave Irradiation. MACROMOL REACT ENG 2021. [DOI: 10.1002/mren.202100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Porfirio López‐Domínguez
- Facultad de Química, Departamento de Ingeniería Química Universidad Nacional Autónoma de México Ciudad de México 04510 México
| | | | - Eduardo Vivaldo‐Lima
- Facultad de Química, Departamento de Ingeniería Química Universidad Nacional Autónoma de México Ciudad de México 04510 México
| |
Collapse
|
20
|
Reyes P, Edeleva M, D’hooge DR, Cardon L, Cornillie P. Combining Chromatographic, Rheological, and Mechanical Analysis to Study the Manufacturing Potential of Acrylic Blends into Polyacrylic Casts. MATERIALS 2021; 14:ma14226939. [PMID: 34832341 PMCID: PMC8621424 DOI: 10.3390/ma14226939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022]
Abstract
Polyacrylics have been considered for a broad range of material applications, including coatings, dental applications, and adhesives. In this experimental study, the casting potential of a group of (co)monomers belonging to the acrylic family has been explored to enable a more sustainable use of these polymer materials in the medical and veterinary science field. The individual contributions of each comonomer have been analyzed, the reaction conversion has been studied via gas chromatography (GC), the rheological behavior has been characterized via stress-controlled measurements, and the final mechanical properties have been obtained from tensile, flexure, and impact tests. The GC results allow assessing the pot life and thus the working window of the casting process. For the rheological measurements, which start from low-viscous mixtures, a novel protocol has been introduced to obtain accurate absolute data. The rheological data reflect the time dependencies of the GC data but facilitate a more direct link with the macroscopic material data. Specifically, the steep increase in the viscosity with increasing reaction time for the methyl methacrylate (MMA)/ethylene glycol dimethyl methacrylate (EGDMA) case (2% crosslinker) allows maximizing several mechanical properties: the tensile/flexure modulus, the tensile/flexure stress at break, and the impact strength. This opens the pathway to more dedicated chemistry design for corrosion casting and polyacrylic material design in general.
Collapse
Affiliation(s)
- Pablo Reyes
- Laboratory of Morphology, Faculty of Veterinary Sciences, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
- Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 130, Zwijnaarde, 9052 Ghent, Belgium;
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, 9052 Ghent, Belgium;
| | - Mariya Edeleva
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, 9052 Ghent, Belgium;
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, 9052 Ghent, Belgium;
- Centre for Textiles Science and Engineering (CTSE), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 70A, Zwijnaarde, 9052 Ghent, Belgium
- Correspondence: (D.R.D.); (P.C.)
| | - Ludwig Cardon
- Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 130, Zwijnaarde, 9052 Ghent, Belgium;
| | - Pieter Cornillie
- Laboratory of Morphology, Faculty of Veterinary Sciences, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
- Correspondence: (D.R.D.); (P.C.)
| |
Collapse
|
21
|
Liausvia F, Rusli W, Herk A. Prediction of the Oligomer Distribution after Degradation of (Co)Polymers with Inserted Break Points. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fiona Liausvia
- Institute of High Performance Computing (IHPC) A*STAR 1 Fusionopolis Way, #16‐16 Connexis Singapore 138632 Singapore
| | - Wendy Rusli
- Institute of Chemical and Engineering Sciences (ICES) A*STAR 1 Pesek Road Jurong Island 627833 Singapore
| | - Alexander Herk
- Institute of Chemical and Engineering Sciences (ICES) A*STAR 1 Pesek Road Jurong Island 627833 Singapore
| |
Collapse
|
22
|
Rego ASC, Brandão ALT. Parameter Estimation and Kinetic Monte Carlo Simulation of Styrene and n-Butyl Acrylate Copolymerization through ATRP. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Artur S. C. Rego
- Department of Chemical and Materials Engineering (DEQM), Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 22451-900, Brazil
| | - Amanda L. T. Brandão
- Department of Chemical and Materials Engineering (DEQM), Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 22451-900, Brazil
| |
Collapse
|
23
|
Marien YW, Edeleva M, Figueira FL, Arraez FJ, Van Steenberge PHM, D'hooge DR. Translating Simulated Chain Length and Molar Mass Distributions in Chain‐Growth Polymerization for Experimental Comparison and Mechanistic Insight. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yoshi W. Marien
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | - Mariya Edeleva
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | - Freddy L. Figueira
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | - Francisco J. Arraez
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | | | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
- Centre for Textile Science and Engineering Ghent University Technologiepark 70a Gent B‐9052 Belgium
| |
Collapse
|
24
|
Dogu O, Plehiers PP, Van de Vijver R, D’hooge DR, Van Steenberge PHM, Van Geem KM. Distribution Changes during Thermal Degradation of Poly(styrene peroxide) by Pairing Tree-Based Kinetic Monte Carlo and Artificial Intelligence Tools. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Onur Dogu
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Zwijnaarde, Belgium
| | - Pieter P. Plehiers
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Zwijnaarde, Belgium
| | - Ruben Van de Vijver
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Zwijnaarde, Belgium
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Zwijnaarde, Belgium
- Centre for Textile Science and Engineering (CTSE), Technologiepark 70a, B-9052 Zwijnaarde, Belgium
| | - Paul H. M. Van Steenberge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Zwijnaarde, Belgium
| | - Kevin M. Van Geem
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Zwijnaarde, Belgium
| |
Collapse
|
25
|
Edeleva M, Marien YW, Van Steenberge PHM, D'hooge DR. Jacket temperature regulation allowing well-defined non-adiabatic lab-scale solution free radical polymerization of acrylates. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00099c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Conventional batch solution free radical polymerization of n-butyl acrylate with thermal initiators such as AIBN is known to be strongly exothermic and influenced by highly activated side reactions such as backbiting and β-scission.
Collapse
Affiliation(s)
- Mariya Edeleva
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
| | - Yoshi W. Marien
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
| | | | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
- Centre for Textile Science and Engineering (CTSE)
| |
Collapse
|
26
|
Edeleva M, Marien YW, Van Steenberge PHM, D'hooge DR. Impact of side reactions on molar mass distribution, unsaturation level and branching density in solution free radical polymerization of n-butyl acrylate under well-defined lab-scale reactor conditions. Polym Chem 2021. [DOI: 10.1039/d1py00151e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The paper describes the influence of side reactions in isothermal solution free-radical polymerization of n-butyl acrylate accounting for chain-length dependent diffusional limitations on termination.
Collapse
Affiliation(s)
- Mariya Edeleva
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Ghent
- Belgium
| | - Yoshi W. Marien
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Ghent
- Belgium
| | | | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Ghent
- Belgium
- Centre for Textile Science and Engineering (CTSE)
| |
Collapse
|
27
|
Figueira FL, Wu YY, Zhou YN, Luo ZH, Van Steenberge PHM, D'hooge DR. Coupled matrix kinetic Monte Carlo simulations applied for advanced understanding of polymer grafting kinetics. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00407c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An innovative coupled matrix-based Monte Carlo (CMMC) concept has been applied to successfully assess the detailed description of the molecular build-up of linear and non-linear chains in the free-radical induced grafting of linear precursors chains.
Collapse
Affiliation(s)
| | - Yi-Yang Wu
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Yin-Ning Zhou
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Zheng-Hong Luo
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | | | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT)
- Ghent University
- Belgium
- Centre for Textile Science and Engineering (CTSE)
- Ghent University
| |
Collapse
|
28
|
Pesenti T, Nicolas J. 100th Anniversary of Macromolecular Science Viewpoint: Degradable Polymers from Radical Ring-Opening Polymerization: Latest Advances, New Directions, and Ongoing Challenges. ACS Macro Lett 2020; 9:1812-1835. [PMID: 35653672 DOI: 10.1021/acsmacrolett.0c00676] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radical ring-opening polymerization (rROP) allows facile incorporation of labile groups (e.g., ester) into the main chain of vinyl polymers to obtain (bio)degradable materials. rROP has focused a lot of attention especially since the advent of reversible deactivation radical polymerization (RDRP) techniques and is still incredibly moving forward, as attested by the numerous achievements in terms of monomer synthesis, macromolecular engineering, and potential biomedical applications of the resulting degradable polymers. In the present Viewpoint, we will cover the latest progress made in rROP in the last ∼5 years, such as its recent directions, its remaining limitations, and the ongoing challenges. More specifically, this will be achieved through the three different classes of monomers that recently caught most of the attention: cyclic ketene acetals (CKA), thionolactones, and macrocyclic monomers.
Collapse
Affiliation(s)
- Théo Pesenti
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
29
|
De Smit K, Marien YW, Edeleva M, Van Steenberge PH, D’hooge DR. Roadmap for Monomer Conversion and Chain Length-Dependent Termination Reactivity Algorithms in Kinetic Monte Carlo Modeling of Bulk Radical Polymerization. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kyann De Smit
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Yoshi W. Marien
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Mariya Edeleva
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Paul H.M. Van Steenberge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
- Centre for Textile Science and Engineering (CTSE), Ghent University, Technologiepark 70A, 9052 Ghent, Belgium
| |
Collapse
|
30
|
De Keer L, Figueira FL, Marien YW, De Smit K, Edeleva M, Van Steenberge PH, D'hooge DR. Benchmarking Stochastic and Deterministic Kinetic Modeling of Bulk and Solution Radical Polymerization Processes by Including Six Types of Factors Two. MACROMOL THEOR SIMUL 2020. [DOI: 10.1002/mats.202000065] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lies De Keer
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | - Freddy L. Figueira
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | - Yoshi W. Marien
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | - Kyann De Smit
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | - Mariya Edeleva
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | - Paul H.M. Van Steenberge
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
- Centre for Textile Science and Engineering Ghent University Technologiepark 70a Gent B‐9052 Belgium
| |
Collapse
|
31
|
Trigilio AD, Marien YW, Van Steenberge PHM, D’hooge DR. Gillespie-Driven kinetic Monte Carlo Algorithms to Model Events for Bulk or Solution (Bio)Chemical Systems Containing Elemental and Distributed Species. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03888] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandro D. Trigilio
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
| | - Yoshi W. Marien
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
| | | | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70a, 9052 Gent, Belgium
| |
Collapse
|