1
|
Zhang L, Du S, Ji W, Li J, Ma R, Yan D, Niu Y, Zhao S, Ru J, Gao Y. Development of an iridium complex fluorescent probe for FGF21 protein labeling and tracking. Sci Rep 2025; 15:12365. [PMID: 40211065 PMCID: PMC11986096 DOI: 10.1038/s41598-025-97470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025] Open
Abstract
Fluorescent or luminescent labeling of biomolecules, as biosensors, with high sensitive and spatiotemporal resolution enable it an outstanding imaging technique for detecting and tracking biomolecular dynamics in many areas of life sciences and biomedical research. Ir(III) complex IrCN with solvent ligands could selectively recognize His via covalent attachment to the His imidazole group, and serve as a reaction-based "turn-on" fluorescent probe for the detection of His and His containing proteins. Fibroblast growth factor 21 (FGF21) was an essential glucose and lipid metabolic regulator and a promising therapeutic target for metabolic disorder syndromes. In this study, a non-emissive cyclometalated Ir(III) solvent complex IrCN was synthesized for FGF21 protein labeling. Binding test showed that the optimal binding ratio of IrCN and FGF21 protein was 1:100 (W/W). The binding between IrCN and FGF21 protein was very rapid, and the reaction could be completed in 10 min. IrCN probe no longer bound to other proteins after it specifically bound to the FGF21 protein. Biocompatibility studies shown that IrCN exhibited low cytotoxicity and tissue toxicity when the concentration was not higher than 50 μg/mL. Whereas, high concentration of IrCN caused organ-specific toxicity, with notable effects observed in both the spleen and skeletal muscle. Cell imaging experiments showed that revealed that unbound IrCN exhibits significant potential as a versatile cytoplasmic labeling agent, while its protein-conjugated form demonstrates effective protein tracing capabilities in cellular systems. Functional validation experiments by quantitative analysis of FGF21-mediated downstream pathway markers demonstrated that IrCN labeling preserves the native biological activity of FGF21 protein. This study demonstrated that IrCN served as a highly sensitive and stable probe for cell imaging and protein fluorescent labeling applications, which established a solid foundation for further exploration of its potential applications in diverse areas of biomolecular research, particularly in protein tracking and live-cell imaging studies.
Collapse
Affiliation(s)
- Lili Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shaobo Du
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Wangye Ji
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jianfei Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ruilin Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Dexiang Yan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuhao Niu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shuqin Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiaxi Ru
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 325035, China.
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Chen B, Liang Z, Gong Y, Wu W, Huang J, Chen J, Wang Y, Mei J, Chen R, Huang Z, Sun J. Mitochondrial Viscosity Probes: Iridium(III) Complexes Induce Apoptosis in HeLa Cells. Chembiochem 2025; 26:e202400756. [PMID: 39513978 DOI: 10.1002/cbic.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Mitochondrial viscosity has emerged as a promising biomarker for diseases such as cancer and neurodegenerative disorders, yet accurately measuring viscosity at the subcellular level remains a significant challenge. In this study, we synthesized and characterized three cyclometalated iridium(III) complexes (Ir1-Ir3) containing 5-fluorouracil derivatives as ligands. Among these, Ir1 selectively induced apoptosis in HeLa cells by increasing mitochondrial production of reactive oxygen species (ROS), which triggered a cascade of events leading to mitochondrial dysfunction. Additionally, the fluorescence lifetime of Ir1 demonstrated high sensitivity to intracellular viscosity changes, enabling real-time fluorescence lifetime imaging microscopy (FLIM) of cellular micro-viscosity during apoptosis. These findings underscore the potential of cyclometalated Ir(III) complexes for both therapeutic and diagnostic applications at the subcellular level.
Collapse
Affiliation(s)
- Bingbing Chen
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhijun Liang
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yao Gong
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Wei Wu
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jiaen Huang
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jiaxi Chen
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yanmei Wang
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jun Mei
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Rui Chen
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Medical University, Dongguan, 523808, China
| | - Jing Sun
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
3
|
Dixit T, Negi M, Venkatesh V. Mitochondria Localized Anticancer Iridium(III) Prodrugs for Targeted Delivery of Myeloid Cell Leukemia-1 (Mcl-1) Inhibitors and Cytotoxic Iridium(III) Complex. Inorg Chem 2024; 63:24709-24723. [PMID: 39667040 DOI: 10.1021/acs.inorgchem.4c03950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Myeloid cell leukemia-1 (Mcl-1) is an antiapoptotic oncoprotein overexpressed in several malignancies and acts as one of the promising therapeutic targets for cancer. Even though there are several small molecule based Mcl-1 inhibitors reported, the delivery of Mcl-1 inhibitor at the target site is quite challenging. In this regard, we developed a series of mitochondria targeting luminescent cyclometalated iridium(III) prodrugs bearing Mcl-1 inhibitors via ester linkage due to the presence of Mcl-1 protein in the outer mitochondrial membrane. Among the synthesized prodrugs, IrThpy@L2 was found to exhibit the potent cytotoxicity (IC50 = 30.93 nM) against HCT116 cell line when compared with bare Mcl-1 inhibitors (IC50 > 100 μM). Mechanistic studies further revealed that IrThpy@L2 quickly gets internalized inside the mitochondria of HCT116 cells and undergoes activation in the presence of overexpressed esterase which leads to the release of two cytotoxic species i.e. Mcl-1 inhibitors (I-2) and cytotoxic iridium(III) complex (IrThpy@OH). The improved cytotoxicity of IrThpy@L2 is due to the mitochondria targeting ability of iridium(III) prodrug, subsequent esterase activated release of I-2 to inhibit Mcl-1 protein and IrThpy@OH to generate reactive oxygen species (ROS). After prodrug activation, the released cytotoxic species cause mitochondrial membrane depolarization, activate a cascade of mitochondria-mediated cell death events, and arrest the cell cycle in S-phase which leads to apoptosis. The potent anticancer activity of IrThpy@L2 was further evident from the drastic morphological changes, size reduction in the solid tumor mimicking 3D multicellular tumor spheroids (MCTS) of HCT116.
Collapse
Affiliation(s)
- Tejal Dixit
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Monika Negi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - V Venkatesh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
4
|
Liang G, Montesdeoca N, Tang D, Wang B, Xiao H, Karges J, Shang K. Facile one-pot synthesis of Ir(III) Bodipy polymeric gemini nanoparticles for tumor selective NIR photoactivated anticancer therapy. Biomaterials 2024; 309:122618. [PMID: 38797122 DOI: 10.1016/j.biomaterials.2024.122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Over the last decades, a variety of metal complexes have been developed as chemotherapeutic agents. Despite the promising therapeutic prospects, the vast majority of these compounds suffer from low solubility, poor pharmacological properties, and most importantly poor tumor accumulation. To circumvent these limitations, herein, the incorporation of cytotoxic Ir(III) complexes and a variety of photosensitizers into polymeric gemini nanoparticles that selectively accumulate in the tumorous tissue and could be activated by near-infrared (NIR) light to exert an anticancer effect is reported. Upon exposure to light, the photosensitizer is able to generate singlet oxygen, triggering the rapid dissociation of the nanostructure and the activation of the Ir prodrug, thereby initiating a cascade of mitochondrial targeting and damage that ultimately leads to cell apoptosis. While selectively accumulating into tumorous tissue, the nanoparticles achieve almost complete eradication of the cisplatin-resistant cervical carcinoma tumor in vivo upon exposure to NIR irradiation.
Collapse
Affiliation(s)
- Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| | - Kun Shang
- Department of Nuclear Medicine, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
5
|
Wei L, He X, Zhao D, Kandawa-Shultz M, Shao G, Wang Y. Biotin-conjugated Ru(II) complexes with AIE characteristics as mitochondria-targeted photosensitizers for enhancing photodynamic therapy by disrupting cellular redox balance. Eur J Med Chem 2024; 264:115985. [PMID: 38016298 DOI: 10.1016/j.ejmech.2023.115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
The potential use of Ru(II) complexes as photosensitizers (PSs) in photodynamic therapy (PDT) has gained significant attention. In comparison with fluorophores with aggregation-caused quenching (ACQ), fluorophores with aggregation-induced emission (AIE) characteristics exhibit sustained fluorescence and dispersibility in aqueous solutions. PSs with AIE characteristics have received much attention in recent years. Herein, we reported two novel biotin-conjugated Ru(II) polypyridyl complexes (Ru1 and Ru2) with AIE characteristics. When exposed to 460 nm (10 mW cm-2) light, Ru1 and Ru2 exhibited outstanding photostability and photocatalytic activity. Ru1 and Ru2 could efficiently generate singlet oxygen and induce pUC19 DNA photolysis when exposed to 460 nm light. Interestingly, both Ru1 and Ru2 also functioned as catalysts for NADH oxidation when exposed to 460 nm light. The presence of biotin fragments in Ru1 and Ru2 enhanced the specific uptake of these complexes by tumor cells. Both complexes showed minimal toxicity to selected cells in the dark. Nevertheless, the phototoxicity of both complexes significantly increased upon 460 nm light irradiation for 15 min. Further experiments revealed that Ru2 primarily accumulated in mitochondria and might bind to mitochondrial DNA. Under 460 nm light irradiation, Ru2 induced the generation of reactive oxygen species (ROS) and NADH depletion disrupting intracellular redox homeostasis in A549 cells, activating the mitochondrial apoptosis pathway resulting in up-regulation of apoptotic marker caspase-3, effectively damaged A549 cell DNA and arrested A549 cell cycle in the S phase. In vivo anti-tumor experiments were conducted to assess the effects of Ru2 on tumor growth in A549 tumor-bearing mice. The results showed that Ru2 effectively inhibited tumor growth under 460 nm light irradiation conditions. These findings indicate that Ru2 has great potential as a targeted photosensitizer for mitochondrial targeting imaging and photodynamic therapy of tumors.
Collapse
Affiliation(s)
- Lai Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiangdong He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Deming Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Martha Kandawa-Shultz
- Department of Chemistry and Biochemistry, University of Namibia, Windhoek, 13301, Namibia
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China.
| | - Yihong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
6
|
Negi M, Dixit T, Venkatesh V. Ligand Dictated Photosensitization of Iridium(III) Dithiocarbamate Complexes for Photodynamic Therapy. Inorg Chem 2023; 62:20080-20095. [PMID: 37994001 DOI: 10.1021/acs.inorgchem.3c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Organelle-targeted photosensitizers (PSs) for photodynamic therapy (PDT) are considered as an effective therapeutic strategy for the development of next generation PSs with the least side effects and high therapeutic efficacy. However, multiorganelle targeted PSs eliciting PDT via both type I and type II mechanisms are scarce. Herein, a series of cyclometalated iridium(III) complexes were formulated [Ir(C∧N)2(S∧S)] (C∧N = 2-phenylpyridine (ppy) and 2-(thiophen-2-yl)pyridine (thpy); S∧S = diethyldithiocarbamate (DEDTC), morpholine-N-dithiocarbamate (MORDTC) and methoxycarbonodithioate (MEDTC)) and the newly designed complexes Ir2@DEDTC and Ir1@MEDTC were characterized by single crystal X-ray crystallography. Complexes containing thpy as C∧N ligand exhibit excellent photophysical properties such as red-shifted emission, high singlet oxygen quantum yield (ϕΔ) and longer photoluminescence lifetime when compared with complexes containing ppy ligands. Ir2@DEDTC exhibits the highest ϕΔ and photoluminescence lifetimes among the synthesized complexes. Therefore, Ir2@DEDTC was chosen to evaluate the photosensitizing ability to produce reactive oxygen species (ROS). Upon blue light irradiation (456 nm), it efficiently produces ROS, i.e., hydroxy radical (•OH) and singlet oxygen (1O2), which was confirmed by electron paramagnetic resonance (EPR) spectroscopy. In vitro photocytotoxicity toward HCT116, HeLa, and PC3 cell lines showed that out of all the synthesized complexes, Ir2@DEDTC has the highest photocytotoxic index (PI > 400) value. Ir2@DEDTC is efficiently taken up by the HCT116 cell line and accumulated mainly in the lysosome and mitochondria of the cells, and after PDT treatment, it elicits cell shrinkage, membrane blebbing, and DNA fragmentation. The phototherapeutic efficacy of Ir2@DEDTC has been investigated against 3D spheroids considering its ability to mimic some of the basic features of solid tumors. The morphology was drastically altered in the Ir2@DEDTC treated 3D spheroid after the light irradiation unleashed the potential of the Ir(III) dithiocarbamate complex as a superior PS for PDT. Hence, mitochondria and lysosome targeted photoactive cyclometalated Ir(III) dithiocarbamate complex exerting oxidative stress via both type I and type II PDT can be regarded as a dual-organelle targeted two-pronged approach for enhanced PDT.
Collapse
Affiliation(s)
- Monika Negi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Tejal Dixit
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - V Venkatesh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
7
|
Tang H, Chen J, Qi LH, Lyu M, Quan H, Tan ZJ. Multifunctional AuPt Nanoparticles for Synergistic Photothermal and Radiation Therapy. Int J Nanomedicine 2023; 18:6869-6882. [PMID: 38026515 PMCID: PMC10674778 DOI: 10.2147/ijn.s422348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Photothermal therapy (PTT) has gained considerable interest as an emerging modality for cancer treatment in recent years. Radiation therapy (RT) has been widely used in the clinic as a traditional treatment method. However, RT and PTT treatments are limited by side effects and penetration depth, respectively. In addition, hypoxia within the tumor can lead to increased resistance to treatment. Methods We synthesized multiple sizes of AuPt by modulating the reaction conditions. The smallest size of AuPt was selected and modified with folic acid (FA) for PTT and RT synergy therapy. Various methods including transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FITR) are used to determine the structure and composition of AuPt-FA (AF). In addition, we researched the photothermal properties of AF with IR cameras and infrared lasers. Flow cytometry, colony formation assays, CCK8, and fluorescent staining for probing the treatment effect in vitro. Also, we explored the targeting of AF by TEM and In Vivo Imaging Systems (IVIS). In vivo experiments, we record changes in tumor volume and weight as well as staining of tumor sections (ROS, Ki67, and hematoxylin and eosin). Results The AuPt with particle size of 16 nm endows it with remarkably high photothermal conversion efficiency (46.84%) and catalase activity compared to other sizes of AuPt (30 nm and 100 nm). AF alleviates hypoxia in the tumor microenvironment, leading to the production of more reactive oxygen species (ROS) during the treatment. In addition, the therapeutic effect was significantly enhanced by combining RT and PTT, with an apoptosis rate of 81.1% in vitro and an in vivo tumor volume reduction rate of 94.0% in vivo. Conclusion These results demonstrate that AF potentiates the synergistic effect of PTT and RT and has the potential for clinical translation.
Collapse
Affiliation(s)
- Han Tang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, People’s Republic of China
| | - Ji Chen
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Lu He Qi
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Meng Lyu
- Department of Gastrointestinal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Hong Quan
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, People’s Republic of China
| | - Zhi Jie Tan
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
8
|
Hua Y, Shao ZH, Zhai A, Zhang LJ, Wang ZY, Zhao G, Xie F, Liu JQ, Zhao X, Chen X, Zang SQ. Water-Soluble Au 25 Clusters with Single-Crystal Structure for Mitochondria-Targeting Radioimmunotherapy. ACS NANO 2023; 17:7837-7846. [PMID: 37022191 DOI: 10.1021/acsnano.3c01068] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Atomically precise gold clusters play an important role in the development of high-Z-element-based radiosensitizers, due to their intriguing structural diversity and advantages in correlating structures and properties. However, the synthesis of gold clusters with both water-solubility and single-crystal structure remains a challenge. In this study, atomically precise Au25(S-TPP)18 clusters (TPP-SNa = sodium 3-(triphenylphosphonio)propane-1-thiolate bromide) showing both mitochondria-targeting ability and water-solubility were obtained via ligand design for enhanced radioimmunotherapy. Compared with Au25(SG)18 clusters (SG = glutathione), Au25(S-TPP)18 exhibited higher radiosensitization efficiency due to its mitochondria-targeting ability, higher ROS production capacity, and obvious inhibition upon thioredoxin reductase (TrxR). In addition, the enhanced radiotherapy-triggered abscopal effect in combination with checkpoint blockade displayed effective growth inhibition of distant tumors. This work reveals the ligand-regulated organelle targeting ability of metal clusters by which feasible strategies to promote their application in precise theranostics could be realized.
Collapse
Affiliation(s)
- Yue Hua
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, College of Chemistry, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Zi-Hui Shao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, College of Chemistry, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Aoqiang Zhai
- School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Jun Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, College of Chemistry, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, College of Chemistry, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Zhao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Fuwei Xie
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Jun-Qi Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Xueli Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, College of Chemistry, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Proteos, 61 Biopolis Drive, 138673, Singapore
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, College of Chemistry, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Chen S, Zhang Z, Wei L, Fan Z, Li Y, Wang X, Feng T, Huang H. Photo-catalytic Staphylococcus aureus inactivation and biofilm destruction with novel bis-tridentate iridium(iii) photocatalyst. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Liu Q, Zhao Y, Zhou H, Chen C. Ferroptosis: challenges and opportunities for nanomaterials in cancer therapy. Regen Biomater 2023; 10:rbad004. [PMID: 36817975 PMCID: PMC9926950 DOI: 10.1093/rb/rbad004] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023] Open
Abstract
Ferroptosis, a completely new form of regulated cell death, is mainly caused by an imbalance between oxidative damage and reductive protection and has shown great anti-cancer potential. However, existing small-molecule ferroptosis inducers have various limitations, such as poor water solubility, drug resistance and low targeting ability, hindering their clinical applications. Nanotechnology provides new opportunities for ferroptosis-driven tumor therapy. Especially, stimuli-responsive nanomaterials stand out among others and have been widely researched because of their unique spatiotemporal control advantages. Therefore, it's necessary to summarize the application of those stimuli-responsive nanomaterials in ferroptosis. Here, we describe the physiological feature of ferroptosis and illustrate the current challenges to induce ferroptosis for cancer therapy. Then, nanomaterials that induce ferroptosis are classified and elaborated according to the external and internal stimuli. Finally, the future perspectives in the field are proposed. We hope this review facilitates paving the way for the design of intelligent nano-ferroptosis inducers.
Collapse
Affiliation(s)
- Qiaolin Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| |
Collapse
|
11
|
Deng X, Ouyang P, Xu W, Yang E, Bao Z, Wu Y, Gong J, Pan J. Research progress of nano selenium in the treatment of oxidative stress injury during hepatic ischemia-reperfusion injury. Front Pharmacol 2023; 13:1103483. [PMID: 36686647 PMCID: PMC9846509 DOI: 10.3389/fphar.2022.1103483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is an additional injury to ischemic tissue after hepatic revascularization, and its pathological mechanism is complex. HIRI is not only involved in the molecular targets that mediate cell death, such as ion channel activation, abnormal protease activation and mitochondrial dysfunction, but also related to the down-regulation of endogenous protective signals. As a by-product of normal aerobic metabolism, reactive oxygen species (ROS) act as a multi effect physiological signal factor at low concentration. However, liver ischemia-reperfusion will lead to excessive ROS accumulation, destroy redox homeostasis, lead to oxidative stress, cause cell death through a variety of mechanisms, and drive the further damage of ischemic liver. Recent studies have found that the antioxidant treatment of nano selenium can reduce the excessive production of ROS and play a potential protective role in reducing HIRI. This paper reviews the molecular mechanism of the antioxidant effect of nano selenium for the prevention and treatment of HIRI, in order to provide further experimental basis for the clinical prevention and treatment of HIRI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jin Gong
- Division 2, Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jinghua Pan
- Division 2, Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Liu L, Li Q, Chen L, Song L, Zhang X, Huo H, You Z, Wu Y, Wu Z, Ye J, Fu Q, Su L, Zhang X, Yang H, Song J. Plasmon enhanced catalysis-driven nanomotors with autonomous navigation for deep cancer imaging and enhanced radiotherapy. Chem Sci 2022; 13:12840-12850. [PMID: 36519050 PMCID: PMC9645394 DOI: 10.1039/d2sc03036e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/13/2022] [Indexed: 12/01/2023] Open
Abstract
Radiosensitizers potentiate the radiotherapy effect while effectively reducing the damage to healthy tissues. However, limited sample accumulation efficiency and low radiation energy deposition in the tumor significantly reduce the therapeutic effect. Herein, we developed multifunctional photocatalysis-powered dandelion-like nanomotors composed of amorphous TiO2 components and Au nanorods (∼93 nm in length and ∼16 nm in outer diameter) by a ligand-mediated interface regulation strategy for NIR-II photoacoustic imaging-guided synergistically enhanced cancer radiotherapy. The non-centrosymmetric nanostructure generates stronger local plasmonic near-fields close to the Au-TiO2 interface. Moreover, the Au-TiO2 Schottky heterojunction greatly facilitates the separation of photogenerated electron-hole pairs, enabling hot electron injection, finally leading to highly efficient plasmon-enhanced photocatalytic activity. The nanomotors exhibit superior motility both in vitro and in vivo, propelled by H2 generated via NIR-catalysis on one side of the Au nanorod, which prevents them from returning to circulation and effectively improves the sample accumulation in the tumor. Additionally, a high radiation dose deposition in the form of more hydroxyl radical generation and glutathione depletion is authenticated. Thus, synergistically enhanced radiotherapeutic efficacy is achieved in both a subcutaneous tumor model and an orthotopic model.
Collapse
Affiliation(s)
- Luntao Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Lihong Song
- Department of Nuclear Medicine, Han Dan Central Hospital Handan 056001 Hebei China
| | - Xueqiang Zhang
- Department of Nuclear Medicine, Han Dan Central Hospital Handan 056001 Hebei China
| | - Hongqi Huo
- Department of Nuclear Medicine, Han Dan Central Hospital Handan 056001 Hebei China
| | - Zhixin You
- Department of Nuclear Medicine, Han Dan Central Hospital Handan 056001 Hebei China
| | - Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Zongsheng Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Jiamin Ye
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| |
Collapse
|
13
|
Lu JJ, Ma XR, Xie K, Yang PX, Li RT, Ye RR. Novel heterobimetallic Ir(III)-Re(I) complexes: design, synthesis and antitumor mechanism investigation. Dalton Trans 2022; 51:7907-7917. [PMID: 35535974 DOI: 10.1039/d2dt00719c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The reasonable design of binuclear or multinuclear metal complexes has demonstrated their potential advantages in the anticancer field. Herein, three heterobimetallic Ir(III)-Re(I) complexes, [Ir(C^N)2LRe(CO)3DIP](PF6)2 (C^N = 2-phenylpyridine (ppy, in IrRe-1), 2-(2-thienyl)pyridine (thpy, in IrRe-2) and 2-(2,4-difluorophenyl)pyridine (dfppy, in IrRe-3); L = pyridylimidazo[4,5-f][1,10]phenanthroline; DIP = 4,7-diphenyl-1,10-phenanthroline), were designed and synthesized. The heterobimetallic IrRe-1-3 complexes show pH-sensitive emission properties, which can be used for specific imaging of lysosomes. Additionally, IrRe-1-3 display higher cytotoxicity against tested tumor cell lines than the clinical chemotherapeutic drug cisplatin. Further mechanisms indicate that IrRe-1-3 can induce apoptosis and autophagy, increase intracellular reactive oxygen species (ROS), depolarize the mitochondrial membrane (MMP), block the cell cycle at the G0/G1 phase and inhibit cell migration. To the best of our knowledge, this is the first example of the synthesis of heterobimetallic Ir(III)-Re(I) complexes with superior anticancer activities and evaluation of their anticancer mechanisms.
Collapse
Affiliation(s)
- Jun-Jian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Xiu-Rong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Kai Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Pei-Xin Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| |
Collapse
|
14
|
Novel bifluorescent Zn(II)–cryptolepine–cyclen complexes trigger apoptosis induced by nuclear and mitochondrial DNA damage in cisplatin-resistant lung tumor cells. Eur J Med Chem 2022; 238:114418. [DOI: 10.1016/j.ejmech.2022.114418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
|
15
|
Song Z, Liu T, Lai H, Meng X, Yang L, Su J, Chen T. A Universally EDTA-Assisted Synthesis of Polytypic Bismuth Telluride Nanoplates with a Size-Dependent Enhancement of Tumor Radiosensitivity and Metabolism In Vivo. ACS NANO 2022; 16:4379-4396. [PMID: 35175721 DOI: 10.1021/acsnano.1c10663] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bismuth telluride (Bi2Te3) is an available thermoelectric material with the lowest band gap among bismuth chalcogenides, revealing a broad application in photocatalysis. Unfortunately, its size and morphology related to a radio-catalysis property have rarely been explored. Herein, an ethylenediaminetetraacetic acid (EDTA)-assisted hydrothermal strategy was introduced to synthesize polytypic Bi2Te3 nanoplates (BT NPs) that exhibit size-dependent radio-sensitization and metabolism characteristics in vivo. By simply varying the molar ratio of EDTA/Bi3+ during the reaction, BT NPs with different sizes and morphologies were obtained. EDTA acting as chelating agent and "capping" agent contributed to the homogeneous growth of BT NPs by eliminating dangling bonds and reducing the surface energy of different facets. Further analyzing the size-dependent radio-sensitization mechanism, larger-sized BT NPs generated holes that preferentially catalyzed the conversion of OH- to ·OH when irradiated with X-rays, while the smaller-sized BT NPs exhibited faster decay kinetics producing higher 1O2 levels to enhance radiotherapy effects. A metabolomic analysis revealed that larger-sized BT NPs were oxidized into Bi(Ox) in the liver via a citrate cycle pathway, whereas smaller-sized BT NPs accumulated in the kidney and were excreted in urine in the form of ions by regulating the metabolism of glutamate. In a cervical cancer model, BT NPs combined with X-ray irradiation significantly antagonized tumor suppression through the promotion of apoptosis in tumor cells. Consequently, in addition to providing a prospect of BT NPs as an efficient radio-sensitizer to boost the tumor radiosensitivity, we put forth a strategy that can be universally applied in synthesizing metal chalcogenides for catalysis-promoted radiotherapy.
Collapse
Affiliation(s)
- Zhenhuan Song
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, P. R. China
- China-Singapore International Joint Research Institute, Guangzhou 510700, P. R. China
| | - Ting Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Haoqiang Lai
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Xiaofeng Meng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, P. R. China
- China-Singapore International Joint Research Institute, Guangzhou 510700, P. R. China
| | - Liu Yang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, P. R. China
- China-Singapore International Joint Research Institute, Guangzhou 510700, P. R. China
| | - Jianyu Su
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, P. R. China
- China-Singapore International Joint Research Institute, Guangzhou 510700, P. R. China
| | - Tianfeng Chen
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
16
|
Ye M, Huang WQ, Li ZX, Wang CX, Liu T, Chen Y, Hor CHH, Man WL, Ni WX. Osmium(VI) nitride triggers mitochondria-induced oncosis and apoptosis. Chem Commun (Camb) 2022; 58:2468-2471. [PMID: 35024704 DOI: 10.1039/d1cc05148b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report a new osmium(VI) nitrido complex bearing a nonplanar tetradentate ligand with potent anticancer activity. This complex causes mitochondrial damage, which induces liver cancer cell death via oncosis and apoptosis. This is the first osmium-based anticancer candidate that induces oncosis.
Collapse
Affiliation(s)
- Meng Ye
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Wan-Qiong Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Zi-Xin Li
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Chuan-Xian Wang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Tao Liu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China.
| | - YunZhou Chen
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, HKSAR, P. R. China
| | | | - Wai-Lun Man
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, HKSAR, P. R. China
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
- Clinical Research Centre, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| |
Collapse
|
17
|
Huang W, He L, Zhang Z, Shi S, Chen T. Shape-Controllable Tellurium-Driven Heterostructures with Activated Robust Immunomodulatory Potential for Highly Efficient Radiophotothermal Therapy of Colon Cancer. ACS NANO 2021; 15:20225-20241. [PMID: 34807558 DOI: 10.1021/acsnano.1c08237] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tellurium (Te)-based semiconductor easily leads to the recombination of photogenerated electron-hole pairs (h+-e-) that severely limits the efficiency of reactive oxygen species (ROS) generation and further hinders its clinical application in biomedicine. With regard to these problems, herein we designed and synthesized a Te heterostructure (BTe-Pd-Au) by incorporating palladium (Pd) and gold (Au) elements to promote its radiosensitivity and photothermal performance, thus realizing highly efficient radiophotothermal tumor elimination by activating robust immunomodulatory potential. This shape-controllable heterostructure that coated by Pd on the surface of Te nanorods and Au in the center of Te nanorods was simply synthesized by using in situ synthesis method, which could promote the generation and separation of h+-e- pairs, thereby exhibiting superior ROS producing ability and photothermal conversion efficiency. Using a mouse model of colon cancer, we proved that BTe-Pd-Au-R-combined radiophotothermal therapy not only eradicated tumor but also elicited to a series of antitumor immune responses by enhancing the cytotoxic T lymphocytes, triggering dendritic cells maturation, and decreasing the percentage of M2 tumor-associated macrophages. In summary, our study highlights a facile strategy to design Te-driven heterostructure with versatile performance in radiosensitization, photothermal therapy, and immunomodulation and offers great promise for clinical translational treatment of colon cancer.
Collapse
Affiliation(s)
- Wei Huang
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Lizhen He
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zhongyang Zhang
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Sujiang Shi
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
18
|
Shao M, Yao M, Liu X, Gao C, Liu W, Guo J, Zong J, Sun X, Liu Z. In Vitro and In Vivo of Triphenylamine-Appended Fluorescent Half-Sandwich Iridium(III) Thiosemicarbazones Antitumor Complexes. Inorg Chem 2021; 60:17063-17073. [PMID: 34709784 DOI: 10.1021/acs.inorgchem.1c02250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Half-sandwiched structure iridium(III) complexes appear to be an attractive organometallic antitumor agents in recent years. Here, four triphenylamine-modified fluorescent half-sandwich iridium(III) thiosemicarbazone (TSC) antitumor complexes were developed. Because of the "enol" configuration of the TSC ligands, these complexes formed a unique dimeric configuration. Aided by the appropriate fluorescence properties, studies found that complexes could enter tumor cells in an energy-dependent mode, accumulate in lysosomes, and result in the damage of lysosome integrity. Complexes could block the cell cycle, improve the levels of intrastitial reactive oxygen species, and lead to apoptosis, which followed an antitumor mechanism of oxidation. Compared with cisplatin, the antitumor potential in vivo and vitro confirmed that Ir4 could effectively inhibit tumor growth. Meanwhile, Ir4 could avoid detectable side effects in the experiments of safety evaluation. Above all, half-sandwich iridium(III) TSC complexes are expected to be an encouraging candidate for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Mingxiao Shao
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Meimei Yao
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Chao Gao
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Weiyan Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jinghang Guo
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jiawen Zong
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xinzhuo Sun
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
19
|
Yi X, Shen M, Liu X, Gu J. Emerging strategies based on nanomaterials for ionizing radiation-optimized drug treatment of cancer. NANOSCALE 2021; 13:13943-13961. [PMID: 34477676 DOI: 10.1039/d1nr03034e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Drug-radiotherapy is a common and effective combinational treatment for cancer. This study aimed to explore the ionizing radiation-optimized drug treatment based on nanomaterials so as to improve the synergistic efficacy of drug-radiotherapy against cancer and limit the adverse effect on healthy organs. In this review, these emerging strategies were divided into four parts. First, the delivery of the drug-loaded nanoparticles was optimized owing to the strengthened passive targeting process, active targeting process, and cell targeting process of nanoparticles after ionizing radiation exposure. Second, nanomaterials were designed to respond to the ionizing radiation, thus leading to the release of the loading drugs controllably. Third, radiation-activated pro-drugs were loaded onto nanoparticles for radiation-triggered drug therapy. In particular, nontoxic nanoparticles with radiosensitization capability and innocuous radio-dynamic contrast agents can be considered as radiation-activated drugs, which were discussed in this review. Fourth, according to the various synergetic mechanisms, radiotherapy could improve the drug response of cancer, obtaining optimized drug-radiotherapy. Finally, relative suggestions were provided to further optimize these aforementioned strategies. Therefore, a novel topic was selected and the emerging strategies in this region were discussed, aiming to stimulate the inspiration for the development of ionizing radiation-optimized drug treatment based on nanomaterials.
Collapse
Affiliation(s)
- Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China.
| | | | | | | |
Collapse
|
20
|
Chen M, Huang X, Shi H, Lai J, Ma L, Lau TC, Chen T. Cr(V)-Cr(III) in-situ transition promotes ROS generation to achieve efficient cancer therapy. Biomaterials 2021; 276:120991. [PMID: 34237506 DOI: 10.1016/j.biomaterials.2021.120991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/29/2023]
Abstract
The development of metal-based anticancer drugs is of considerable interest and significance in inorganic medicine. In contrast to noble metal-based small molecules, the anticancer property of earth abundant metal-based small molecules is much less explored which are usually essential trace element for the human body. Among earth abundant metals, chromium (Cr) in the +3 valent is an essential trace element for the human body to low down the blood lipids and maintain the blood sugar; on the other hand, Cr(VI) are known to be highly toxic due to their oxidation power. To design stable high-valent Cr small molecules to construct Cr(high-valent)-Cr(III) in-situ transition system to achieve low-toxic and highly efficient anti-cancer therapy is a very desirable approach. Herein we report the Cr(V)-Cr(III) in-situ transition system promotes ROS generation to achieve efficient cancer therapy in vivo and in vitro. To the best of our knowledge, these Cr-based small molecules are the first stable Cr(V) compounds with potent anticancer efficacy, especially towards malignant cancers.
Collapse
Affiliation(s)
- Mingkai Chen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xiaoting Huang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Huatian Shi
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jie Lai
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Li Ma
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Tianfeng Chen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
21
|
Substituent-regulated highly X-ray sensitive Os(VI) nitrido complex for low-toxicity radiotherapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Anthony EJ, Bolitho EM, Bridgewater HE, Carter OWL, Donnelly JM, Imberti C, Lant EC, Lermyte F, Needham RJ, Palau M, Sadler PJ, Shi H, Wang FX, Zhang WY, Zhang Z. Metallodrugs are unique: opportunities and challenges of discovery and development. Chem Sci 2020; 11:12888-12917. [PMID: 34123239 PMCID: PMC8163330 DOI: 10.1039/d0sc04082g] [Citation(s) in RCA: 379] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Metals play vital roles in nutrients and medicines and provide chemical functionalities that are not accessible to purely organic compounds. At least 10 metals are essential for human life and about 46 other non-essential metals (including radionuclides) are also used in drug therapies and diagnostic agents. These include platinum drugs (in 50% of cancer chemotherapies), lithium (bipolar disorders), silver (antimicrobials), and bismuth (broad-spectrum antibiotics). While the quest for novel and better drugs is now as urgent as ever, drug discovery and development pipelines established for organic drugs and based on target identification and high-throughput screening of compound libraries are less effective when applied to metallodrugs. Metallodrugs are often prodrugs which undergo activation by ligand substitution or redox reactions, and are multi-targeting, all of which need to be considered when establishing structure-activity relationships. We focus on early-stage in vitro drug discovery, highlighting the challenges of evaluating anticancer, antimicrobial and antiviral metallo-pharmacophores in cultured cells, and identifying their targets. We highlight advances in the application of metal-specific techniques that can assist the preclinical development, including synchrotron X-ray spectro(micro)scopy, luminescence, and mass spectrometry-based methods, combined with proteomic and genomic (metallomic) approaches. A deeper understanding of the behavior of metals and metallodrugs in biological systems is not only key to the design of novel agents with unique mechanisms of action, but also to new understanding of clinically-established drugs.
Collapse
Affiliation(s)
- Elizabeth J Anthony
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Elizabeth M Bolitho
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Hannah E Bridgewater
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Oliver W L Carter
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Jane M Donnelly
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Cinzia Imberti
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Edward C Lant
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Frederik Lermyte
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Russell J Needham
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Marta Palau
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Huayun Shi
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Fang-Xin Wang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Wen-Ying Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Zijin Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
23
|
Liu J, Li Y, Chen S, Lin Y, Lai H, Chen B, Chen T. Biomedical Application of Reactive Oxygen Species-Responsive Nanocarriers in Cancer, Inflammation, and Neurodegenerative Diseases. Front Chem 2020; 8:838. [PMID: 33062637 PMCID: PMC7530259 DOI: 10.3389/fchem.2020.00838] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Numerous pathological conditions, including cancer, inflammatory diseases, and neurodegenerative diseases, are accompanied by overproduction of reactive oxygen species (ROS). This makes ROS vital flagging molecules in disease pathology. ROS-responsive drug delivery platforms have been developed. Nanotechnology has been broadly applied in the field of biomedicine leading to the progress of ROS-responsive nanoparticles. In this review, we focused on the production and physiological/pathophysiological impact of ROS. Particular emphasis is put on the mechanisms and effects of abnormal ROS levels on oxidative stress diseases, including cancer, inflammatory disease, and neurodegenerative diseases. Finally, we summarized the potential biomedical applications of ROS-responsive nanocarriers in these oxidative stress diseases. We provide insights that will help in the designing of new ROS-responsive nanocarriers for various applications.
Collapse
Affiliation(s)
- Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongjin Li
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Chen
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongpeng Lin
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoqiang Lai
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Bolai Chen
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Lai L, Xiong Z, Ma L, Chen T. Smart Microenvironment-Responsive Organocopper(II) Supramolecular Polymers to Regulate the Stability and Anticancer Efficacy by Different Substituents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40013-40020. [PMID: 32805979 DOI: 10.1021/acsami.0c09919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The search for chemotherapeutic drugs with a high efficiency and low toxicity continues to be a challenge in tumor treatment for scientists. Organometallic supramolecular polymers are an attractive option to achieve this goal, not only due to the fact that they possess both advantages of metal complexes and nanostructures but also because they are usually sensitive to pH. Here, we report the design and synthesis of a series novel smart microenvironment-responsive organocopper(II) supramolecular polymers with various substituted ligands to regulate their stability and anticancer efficacy. The investigation of the possible mechanisms revealed that the organocopper(II) polymers enter cancer cells through endocytosis and then induce apoptosis of cancer cells. Furthermore, the in vivo anticancer efficacy study demonstrated that these organocopper(II) polymers inhibited the tumor growth effectively without damage to the major organs. Overall, the organocopper(II) supramolecular polymers present a promising pathway to achieve high-efficiency and low-toxicity chemotherapy.
Collapse
Affiliation(s)
- Lanhai Lai
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zushuang Xiong
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Li Ma
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
25
|
Chen Y, Gao P, Wu T, Pan W, Li N, Tang B. Organelle-localized radiosensitizers. Chem Commun (Camb) 2020; 56:10621-10630. [DOI: 10.1039/d0cc03245j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This feature article highlights the recent advances of organelle-localized radiosensitizers and discusses the current challenges and future directions.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Peng Gao
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Tong Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Wei Pan
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Na Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| |
Collapse
|