1
|
Li LJ, Mu WL, Tian YQ, Yu WD, Li LY, Yan J, Liu C. Ag 1+ incorporation via a Zr 4+-anchored metalloligand: fine-tuning catalytic Ag sites in Zr/Ag bimetallic clusters for enhanced eCO 2RR-to-CO activity. Chem Sci 2024; 15:7643-7650. [PMID: 38784741 PMCID: PMC11110141 DOI: 10.1039/d3sc07005k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/24/2024] [Indexed: 05/25/2024] Open
Abstract
Attaining meticulous dominion over the binding milieu of catalytic metal sites remains an indispensable pursuit to tailor product selectivity and elevate catalytic activity. By harnessing the distinctive attributes of a Zr4+-anchored thiacalix[4]arene (TC4A) metalloligand, we have pioneered a methodology for incorporating catalytic Ag1+ sites, resulting in the first Zr-Ag bimetallic cluster, Zr2Ag7, which unveils a dualistic configuration embodying twin {ZrAg3(TC4A)2} substructures linked by an {AgSal} moiety. This cluster unveils a trinity of discrete Ag sites: a pair ensconced within {ZrAg3(TC4A)2} subunits and one located between two units. Expanding the purview, we have also crafted ZrAg3 and Zr2Ag2 clusters, meticulously mimicking the two Ag site environment inherent in the {ZrAg3(TC4A)2} monomer. The distinct structural profiles of Zr2Ag7, ZrAg3, and Zr2Ag provide an exquisite foundation for a precise comparative appraisal of catalytic prowess across three Ag sites intrinsic to Zr2Ag7. Remarkably, Zr2Ag7 eclipses its counterparts in the electroreduction of CO2, culminating in a CO faradaic efficiency (FECO) of 90.23% at -0.9 V. This achievement markedly surpasses the performance metrics of ZrAg3 (FECO: 55.45% at -1.0 V) and Zr2Ag2 (FECO: 13.09% at -1.0 V). Utilizing in situ ATR-FTIR, we can observe reaction intermediates on the Ag sites. To unveil underlying mechanisms, we employ density functional theory (DFT) calculations to determine changes in free energy accompanying each elementary step throughout the conversion of CO2 to CO. Our findings reveal the exceptional proficiency of the bridged-Ag site that interconnects paired {ZrAg3(TC4A)2} units, skillfully stabilizing *COOH intermediates, surpassing the stabilization efficacy of the other Ag sites located elsewhere. The invaluable insights gleaned from this pioneering endeavor lay a novel course for the design of exceptionally efficient catalysts tailored for CO2 reduction reactions, emphatically underscoring novel vistas this research unshrouds.
Collapse
Affiliation(s)
- Liang-Jun Li
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Wen-Lei Mu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Yi-Qi Tian
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Wei-Dong Yu
- China College of Science, Hunan University of Technology and Business Changsh 410000 P. R. China
| | - Lan-Yan Li
- China College of Science, Hunan University of Technology and Business Changsh 410000 P. R. China
| | - Jun Yan
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Chao Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| |
Collapse
|
2
|
Zeng QW, Hu L, Niu Y, Wang D, Kang Y, Jia H, Dou WT, Xu L. Metal-organic cages for gas adsorption and separation. Chem Commun (Camb) 2024; 60:3469-3483. [PMID: 38444260 DOI: 10.1039/d3cc05935a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The unique high surface area and tunable cavity size endow metal-organic cages (MOCs) with superior performance and broad application in gas adsorption and separation. Over the past three decades, for instance, numerous MOCs have been widely explored in adsorbing diverse types of gas including energy gases, greenhouse gases, toxic gases, noble gases, etc. To gain a better understanding of the structure-performance relationships, great endeavors have been devoted to ligand design, metal node regulation, active metal site construction, cavity size adjustment, and function-oriented ligand modification, thus opening up routes toward rationally designed MOCs with enhanced capabilities. Focusing on the unveiled structure-performance relationships of MOCs towards target gas molecules, this review consists of two parts, gas adsorption and gas separation, which are discussed separately. Each part discusses the cage assembly process, gas adsorption strategies, host-guest chemistry, and adsorption properties. Finally, we briefly overviewed the challenges and future directions in the rational development of MOC-based sorbents for application in challenging gas adsorption and separation, including the development of high adsorption capacity MOCs oriented by adsorbability and the development of highly selective adsorption MOCs oriented by separation performance.
Collapse
Affiliation(s)
- Qing-Wen Zeng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Yulian Niu
- Shanghai Jahwa United Co., Ltd, Shanghai 200082, P. R. China.
| | - Dehua Wang
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing 100083, China.
- East China Normal University, Shanghai 200062, P. R. China
| | - Yan Kang
- Shanghai Jahwa United Co., Ltd, Shanghai 200082, P. R. China.
| | - Haidong Jia
- Shanghai Jahwa United Co., Ltd, Shanghai 200082, P. R. China.
| | - Wei-Tao Dou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing 100083, China.
- East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
3
|
Tayier F, Troyano J, Tokuda S, Wang Z, Haga MA, Furukawa S. Redox-Active Ruthenium-Organic Polyhedra with Tunable Surface Functionality and Porosities. Inorg Chem 2024; 63:5559-5567. [PMID: 38470047 DOI: 10.1021/acs.inorgchem.3c04530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Dinuclear ruthenium paddlewheel complexes exhibit high structural stability in redox reactions. The use of these chemical motifs for the construction of Ru-based metal-organic polyhedra (RuMOPs) provides a route for redox-active porous materials. However, there are few studies on the synthesis and characterization of RuMOPs due to the difficulty in controlling the assembly process via the ligand-exchange reaction of equatorial acetates of the diruthenium tetraacetate precursors with dicarboxylic acid ligands. In this study, we synthesized three novel cuboctahedral RuMOPs based on the Ru2(II/III)-paddlewheel units with different alkyl functionalizations on the benzene-1,3-dicarboxylate moieties. We evaluated the effect of external functionalization on the molecular packing and the porous and redox properties. The electrochemical measurements revealed the multielectron transferred redox process where the electron-donating/-withdrawing nature of the functional groups allows the control of the redox behavior.
Collapse
Affiliation(s)
- Fuerkaiti Tayier
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Javier Troyano
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Inorganic Chemistry, Autonomous University of Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Shun Tokuda
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Zaoming Wang
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masa-Aki Haga
- Research and Development Initiative, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
4
|
Dey A, Dworzak MR, Korathotage KDP, Ghosh M, Hoq J, Montone CM, Yap GPA, Bloch ED. Increasing the stability of calixarene-capped porous cages through coordination sphere tuning. Dalton Trans 2024; 53:4005-4009. [PMID: 38314611 DOI: 10.1039/d3dt03365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Chemically and thermally stable permanently porous coordination cages are appealing candidates for separations, catalysis, and as the porous component of new porous liquids. However, many of these applications have not turned to microporous cages as a result of their poor solubility and thermal or hydrolytic stability. Here we describe the design and modular synthesis of iron and cobalt cages where the carboxylate groups of the bridging ligands of well-known calixarene capped coordination cages have been replaced with more basic triazole units. The resultingly higher M-L bond strengths afford highly stable cages that are amenable to modular synthetic approaches and potential functionalization or modification. Owing to the robust nature of these cages, they are highly processable and are isolable in various physical states with tunable porosity depending on the solvation methods used. As the structural integrity of the cages is maintained upon high activation temperatures, apparent losses in porosity can be mediated by resolvation and crystallization or precipitation.
Collapse
Affiliation(s)
- Avishek Dey
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Michael R Dworzak
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | - Munmun Ghosh
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Jahidul Hoq
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Christine M Montone
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Glenn P A Yap
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Eric D Bloch
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
5
|
Tian YQ, Mu WL, Wu LL, Yi XY, Yan J, Liu C. Stepwise assembly of thiacalix[4]arene-protected Ag/Ti bimetallic nanoclusters: accurate identification of catalytic Ag sites in CO 2 electroreduction. Chem Sci 2023; 14:10212-10218. [PMID: 37772117 PMCID: PMC10530961 DOI: 10.1039/d3sc02793g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
The accurate identification of catalytic sites in heterogeneous catalysts poses a significant challenge due to the intricate nature of controlling interfacial chemistry at the molecular level. In this study, we introduce a novel strategy to address this issue by utilizing a thiacalix[4]arene (TC4A)-protected Ti-oxo core as a template for loading Ag1+ ions, leading to the successful synthesis of a unique Ag/Ti bimetallic nanocluster denoted as Ti8Ag8. This nanocluster exhibits multiple surface-exposed Ag sites and possesses a distinctive "core-shell" structure, consisting of a {Ti4@Ag8(TC4A)4} core housing a {Ti2O2@Ag4(TC4A)2} motif and two {Ti@Ag2(TC4A)} motifs. To enable a comprehensive analysis, we also prepared a Ti2Ag4 cluster with the same {Ti2O2@Ag4(TC4A)2} structure found within Ti8Ag8. The structural disparities between Ti8Ag8 and Ti2Ag4 provide an excellent platform for a comparison of catalytic activity at different Ag sites. Remarkably, Ti8Ag8 exhibits exceptional performance in the electroreduction of CO2 (eCO2RR), showcasing a CO faradaic efficiency (FECO) of 92.33% at -0.9 V vs. RHE, surpassing the FECO of Ti2Ag4 (69.87% at -0.9 V vs. RHE) by a significant margin. Through density functional theory (DFT) calculations, we unveil the catalytic mechanism and further discover that Ag active sites located at {Ti@Ag2(TC4A)} possess a higher εd value compared to those at {Ti2O2@Ag4(TC4A)2}, enhancing the stabilization of the *COOH intermediate during the eCO2RR. This study provides valuable insights into the accurate identification of catalytic sites in bimetallic nanoclusters and opens up promising avenues for efficient CO2 reduction catalyst design.
Collapse
Affiliation(s)
- Yi-Qi Tian
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Wen-Lei Mu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Lin-Lin Wu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Xiao-Yi Yi
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Jun Yan
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Chao Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| |
Collapse
|
6
|
Doñagueda Suso B, Legrand A, Weetman C, Kennedy AR, Fletcher AJ, Furukawa S, Craig GA. Porous Metal-Organic Cages Based on Rigid Bicyclo[2.2.2]oct-7-ene Type Ligands: Synthesis, Structure, and Gas Uptake Properties. Chemistry 2023; 29:e202300732. [PMID: 37022280 PMCID: PMC10947411 DOI: 10.1002/chem.202300732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/07/2023]
Abstract
Three new ligands containing a bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxydiimide unit have been used to assemble lantern-type metal-organic cages with the general formula [Cu4 L4 ]. Functionalisation of the backbone of the ligands leads to distinct crystal packing motifs between the three cages, as observed with single-crystal X-ray diffraction. The three cages vary in their gas sorption behaviour, and the capacity of the materials for CO2 is found to depend on the activation conditions: softer activation conditions lead to superior uptake, and one of the cages displays the highest BET surface area found for lantern-type cages so far.
Collapse
Affiliation(s)
| | - Alexandre Legrand
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto UniversityiCeMS Research Building Yoshida, Sakyo-kuKyotoJapan
- Unité de Catalyse et Chimie du Solide (UCCS)Université de LilleCNRSCentrale LilleUniversité d'ArtoisUMR 818159000LilleFrance
| | - Catherine Weetman
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Alan R. Kennedy
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Ashleigh J. Fletcher
- Department of Chemical and Process EngineeringUniversity of StrathclydeGlasgowG1 1XJUK
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto UniversityiCeMS Research Building Yoshida, Sakyo-kuKyotoJapan
- Department of Synthetic Chemistry and Biological ChemistryKyoto UniversityiCeMS Research Building Yoshida, Sakyo-kuKyotoJapan
| | - Gavin A. Craig
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|
7
|
Antonio AM, Korman KJ, Deegan MM, Taggart GA, Yap GPA, Bloch ED. Utilization of a Mixed-Ligand Strategy to Tune the Properties of Cuboctahedral Porous Coordination Cages. Inorg Chem 2022; 61:4609-4617. [PMID: 35263080 DOI: 10.1021/acs.inorgchem.1c03519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ligand functionalization has been thoroughly leveraged to alter the properties of paddlewheel-based coordination cages where, in the case of ligand-terminated cages, functional groups are positioned on the periphery of synthesized cages. While these groups can be used to optimize solubility, porosity, crystal packing, thermal stability toward desolvation, reactivity, or optical activity, optimization of multiple properties can be challenging given their interconnected nature. For example, installation of functional groups to increase the solubility of porous cages typically has the effect of decreasing their porosity and stability toward thermal activation. Here we show that mixed-ligand cages can potentially address these issues as the benefits of various functional groups can be combined into one mixed-ligand cage. We further show that although ligand exchange reactions can be employed to obtain mixed ligand copper(II)-based cages, direct synthesis of mixed-ligand products is necessary for molybdenum(II) paddlewheel-based cages as these substitutionally inert clusters are resistant to ligand exchange. We ultimately show that highly soluble, highly porous, and thermally stable cuboctahedral cages are isolable by this strategy.
Collapse
Affiliation(s)
- Alexandra M Antonio
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Kyle J Korman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Meaghan M Deegan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Garrett A Taggart
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Eric D Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
8
|
Ezugwu CI, Sonawane JM, Rosal R. Redox-active metal-organic frameworks for the removal of contaminants of emerging concern. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Kniazeva MV, Ovsyannikov AS, Nowicka B, Kyritsakas N, Samigullina AI, Gubaidullin AT, Islamov DR, Dorovatovskii PV, Popova EV, Kleshnina SR, Solovieva SE, Antipin IS, Ferlay S. Porous nickel and cobalt hexanuclear ring-like clusters built from two different kind of calixarene ligands – new molecular traps for small volatile molecules. CrystEngComm 2022. [DOI: 10.1039/d1ce01361k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation and structural analysis of porous hexanuclear ring-like cluster complexes built from two different kind of calixarene ligands is presented, together with their stability and vapor solvent sorption properties.
Collapse
Affiliation(s)
- Mariia V. Kniazeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Alexander S. Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Aida I. Samigullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Daut R. Islamov
- Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of Russian Academy of Sciences, Lobachevskogo 2 str, Kazan 420008, Russian Federation
| | - Pavel V. Dorovatovskii
- National Research Centre “Kurchatov Institute”, Acad. Kurchatov 1 Sq., 123182 Moscow, Russian Federation
| | - Elena V. Popova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Sofiya R. Kleshnina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | | | - Igor S. Antipin
- Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Sylvie Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France
| |
Collapse
|
10
|
Deegan MM, Bhattacharjee R, Caratzoulas S, Bloch ED. Stabilizing Porosity in Organic Cages through Coordination Chemistry. Inorg Chem 2021; 60:7044-7050. [PMID: 33905236 DOI: 10.1021/acs.inorgchem.0c03590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The number of studies concerning the permanent porosity of molecular materials, especially porous organic cages (POCs) and porous coordination cages (PCCs), have increased substantially over the past decade. The work presented here outlines novel approaches to the preparation of porous molecular structures upon metalation of nonporous, amine-based organic cages. Reduction of the well-known CC3 and CC1 imine-based POCs affords nonporous, highly flexible amine cages. These materials can be endowed with significant levels of structural rigidity via post-synthetic metalation of their ethylenediamine-type binding pockets. The hybrid metal-organic cages accessed through this approach combine aspects of POC and PCC chemistry, with structures of this type providing a potentially promising new direction for the design and development of porous molecular materials with tunability in overall charge, metal cation, porosity, and solubility.
Collapse
Affiliation(s)
- Meaghan M Deegan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Rameswar Bhattacharjee
- Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, Delaware 19716, United States
| | - Stavros Caratzoulas
- Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, Delaware 19716, United States
| | - Eric D Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
11
|
Dworzak MR, Deegan MM, Yap GPA, Bloch ED. Synthesis and Characterization of an Isoreticular Family of Calixarene-Capped Porous Coordination Cages. Inorg Chem 2021; 60:5607-5616. [PMID: 33784080 DOI: 10.1021/acs.inorgchem.0c03554] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionalization of permanently porous coordination cages has been used to tune phase, surface area, stability, and solubility in this promising class of adsorbents. For many cages, however, these properties are intricately tied together, and installation of functional groups, for example, to increase solubility often leads to a decrease in surface area. Calixarene-capped cages offer the advantage in that they are cluster-terminated cages whose solid-state packing, and thus surface area, is typically governed by the nature of the capping ligand rather than the bridging ligand. In this work we investigate the influence of ligand functionalization on two series of isoreticular Ni(II)- and Co(II)-based calixarene-capped cages. The two types of materials described are represented as octahedral and rectangular prismatic coordination cages and can be synthesized in a modular manner, allowing for the substitution of dicarboxylate bridging ligands and the introduction of functional groups in specific locations on the cage. We ultimately show that highly soluble cages can be obtained while still having access to high surface areas for many of the isolated phases.
Collapse
Affiliation(s)
- Michael R Dworzak
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Meaghan M Deegan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Eric D Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
12
|
Deegan MM, Bloch ED. Synthesis, characterization, and polymerization of capped paddlewheel porous cages. Dalton Trans 2021; 50:3127-3131. [PMID: 33616139 DOI: 10.1039/d0dt04361c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although paddlewheel-based structures are common among permanently porous metal-organic materials, suitable strategies for the isolation of metal node-terminated, capped paddlewheel-based cage structures remain limited. We explored the use of chelating dicarboxylate ligand derivates (esp) for the isolation of trimesate-linked cages, Mo12(btc)4(esp)6, that are structural analogs of the small octahedral pore of HKUST-1. The porosity of these novel cages is appreciably higher than that of previously reported structures of this type. We also demonstrate that pillaring the isolated cage with DABCO generated an amorphous polymer that featured exceptional thermal stability and enhanced porosity.
Collapse
Affiliation(s)
- Meaghan M Deegan
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| | - Eric D Bloch
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| |
Collapse
|
13
|
Deegan MM, Dworzak MR, Gosselin AJ, Korman KJ, Bloch ED. Gas Storage in Porous Molecular Materials. Chemistry 2021; 27:4531-4547. [PMID: 33112484 DOI: 10.1002/chem.202003864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Molecules with permanent porosity in the solid state have been studied for decades. Porosity in these systems is governed by intrinsic pore space, as in cages or macrocycles, and extrinsic void space, created through loose, intermolecular solid-state packing. The development of permanently porous molecular materials, especially cages with organic or metal-organic composition, has seen increased interest over the past decade, and as such, incredibly high surface areas have been reported for these solids. Despite this, examples of these materials being explored for gas storage applications are relatively limited. This minireview outlines existing molecular systems that have been investigated for gas storage and highlights strategies that have been used to understand adsorption mechanisms in porous molecular materials.
Collapse
Affiliation(s)
- Meaghan M Deegan
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Michael R Dworzak
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Aeri J Gosselin
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Kyle J Korman
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Eric D Bloch
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
14
|
Manipulating solvent and solubility in the synthesis, activation, and modification of permanently porous coordination cages. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Tong HY, Liang J, Wu QJ, Zou YH, Huang YB, Cao R. Soluble imidazolium-functionalized coordination cages for efficient homogeneous catalysis of CO2 cycloaddition reactions. Chem Commun (Camb) 2021; 57:2140-2143. [DOI: 10.1039/d0cc08098e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The soluble metal–organic cage ImBDC-Co can be employed as a homogeneous catalyst for the CO2 cycloaddition reaction, and shows higher catalytic activity than its heterogeneous counterparts. Moreover, the soluble cage can realize recovery and reuse without activity loss.
Collapse
Affiliation(s)
- Hui-Ying Tong
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences, Fujian
- Fuzhou
- P. R. China
| | - Jun Liang
- Hoffmann Institute of Advanced Materials
- Shenzhen Polytechnic 7098 Liuxian Blvd
- Nanshan District
- Shenzhen
- P. R. China
| | - Qiu-Jin Wu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences, Fujian
- Fuzhou
- P. R. China
| | - Yu-Huang Zou
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences, Fujian
- Fuzhou
- P. R. China
| | - Yuan-Biao Huang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences, Fujian
- Fuzhou
- P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences, Fujian
- Fuzhou
- P. R. China
| |
Collapse
|
16
|
Korman KJ, Decker GE, Dworzak MR, Deegan MM, Antonio AM, Taggart GA, Bloch ED. Using Low-Pressure Methane Adsorption Isotherms for Higher-Throughput Screening of Methane Storage Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40318-40327. [PMID: 32786240 DOI: 10.1021/acsami.0c11200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A useful correlation between the low-pressure (up to 1.2 bar), low-temperature (195 K) and high-pressure (up to 65 bar), room temperature (298 K) methane storage properties of a range of porous materials is reported. Methane isotherms under these two sets of conditions show a remarkable agreement in both equilibrium adsorption and deliverable capacities for materials with pore volumes that are less than approximately 0.80 cm3/g. This trend holds well for the suite of metal-organic frameworks and porous coordination cages we studied, in addition to a zeolite and porous organic cage. Although it is well known that gravimetric gas storage capacity trends with gravimetric surface area, the 1.2 bar, 195 K excess adsorption capacity of a given framework is a better indicator of its room temperature, 65 bar capacity. Given the significantly smaller sample quantities needed for low-pressure measurements, greater accessibility to researchers around the world, accuracy of the measurement, and higher throughput, we envision this method as a rapid screening tool for the identification of methane storage materials. As excess/total adsorption and gravimetric/volumetric adsorption can be interconverted by simple utilization of the scalar quantities of pore volume or density, respectively, this method can be easily adapted to obtain both gravimetric and volumetric total adsorption capacities for a given adsorbent. In terms of volumetric methane adsorption, we further investigate the relationship between crystallographic and bulk density for the adsorbents studied here. With this analysis, it becomes apparent that in the absence of novel synthetic approaches, reported volumetric storage capacities should be viewed as an optimistic upper limit for a given material and not necessarily a true reflection of its actual adsorption properties as most MOFs have bulk densities that are less than half of their crystallographic values.
Collapse
Affiliation(s)
- Kyle J Korman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Gerald E Decker
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Michael R Dworzak
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Meaghan M Deegan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Alexandra M Antonio
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Garrett A Taggart
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Eric D Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|