1
|
Baruah P, Padhi D, Moorthy H, Ramesh M, Govindaraju T. Navigating the dichotomy of reactive oxygen, nitrogen, and sulfur species: detection strategies and therapeutic interventions. RSC Chem Biol 2025:d5cb00006h. [PMID: 39877134 PMCID: PMC11770382 DOI: 10.1039/d5cb00006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Reactive oxygen, nitrogen and sulfur species (RONSS) collectively encompasses a variety of energetically dynamic entities that emerge as inherent characteristics of aerobic life. This broad category includes reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). A conundrum arises from the indispensable role of RONSS in redox signalling, while its overproduction in the mitochondria poses deleterious effects. This imbalance leads to biomolecular damage and contributes to neurodegenerative disorders, cancer, cardiovascular diseases and inflammation. Notably, the differential roles of RONSS across various diseases can be strategically exploited for therapeutic interventions. Timely, precise, and sensitive detection methods are indispensable for elucidating the spatiotemporal dynamics of RONSS and evaluating disease pathogenesis and progression. By monitoring RONSS levels, we can discern early markers of disease onset, enabling proactive intervention strategies for effective disease management. Therapeutic interventions targeting oxidative/nitrosative stress in disease pathologies have proven to be effective treatment routes in the mitigation of different diseases. This review aims to offer a comprehensive overview of the functional implications and delicate balance of RONSS in disease conditions, and advances made in detection strategies over the years while offering therapeutic strategies to tackle their adverse effects. A special emphasis is focussed on neurodegenerative disorders and cancer with case studies using RONSS-targeted chemical probes and prodrugs.
Collapse
Affiliation(s)
- Prayasee Baruah
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Dikshaa Padhi
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| |
Collapse
|
2
|
Rola M, Zielonka J, Smulik-Izydorczyk R, Pięta J, Pierzchała K, Sikora A, Michalski R. Boronate-Based Bioactive Compounds Activated by Peroxynitrite and Hydrogen Peroxide. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 10:100040. [PMID: 39678628 PMCID: PMC11637410 DOI: 10.1016/j.rbc.2024.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Boronates react directly and stoichiometrically with peroxynitrite and hydrogen peroxide. For this reason, boronates have been widely used as peroxynitrite- and hydrogen peroxide-sensitive moieties in various donors of bioactive compounds. So far, numerous boronate-based prodrugs and theranostics have been developed, characterized, and used in biological research. Here, the kinetic aspects of their activation are discussed, and the potential benefits of modifying their original structure with a boronic or boronobenzyl moiety are described.
Collapse
Affiliation(s)
- Monika Rola
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Renata Smulik-Izydorczyk
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Karolina Pierzchała
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
3
|
Lu J, Wu Y, Zhan S, Zhong Y, Guo Y, Gao J, Zhang B, Dong X, Che J, Xu Y. A Microenvironment-responsive small-molecule probe and application in quick acute myocardial infarction imaging. Talanta 2024; 270:125571. [PMID: 38154354 DOI: 10.1016/j.talanta.2023.125571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Acute myocardial infarction (AMI) patients are at an elevated risk for life-threatening myocardial ischemia/reperfusion injury. Early-stage nonradioactive and noninvasive diagnosis of AMI is imperative for the subsequent disease treatment, yet it presents substantial challenges. After AMI, the myocardium typically exhibits elevated levels of peroxynitrite (ONOO-), constituting a distinct microenvironmental feature. In this context, the near-infrared imaging probe (BBEB) is employed to precisely delineate the boundaries of AMI lesions with a high level of sensitivity and specificity by monitoring endogenous ONOO-. This probe allows for the early detection of myocardial damage at cellular and animal levels, providing exceptional temporal and spatial resolution. Notably, BBEB enables visualization of ONOO- level alterations during AMI treatment incorporating antioxidant drugs. Overall, BBEB can rapidly and accurately visualize myocardial injury, particularly in the early stages, and can further facilitate antioxidant drug screening.
Collapse
Affiliation(s)
- Jialiang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yirong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Siyao Zhan
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Gao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
| |
Collapse
|
4
|
Han HH, Liu MJ, Zhang W, Sun LL, Ma X, Qiao H, Sun S, Yang J, Chai X, Wu Z, He XP. The development of logic gate-based fluorescent probes that respond to intracellular hydrogen peroxide and pH in tandem. Talanta 2024; 270:125526. [PMID: 38091748 DOI: 10.1016/j.talanta.2023.125526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
Logic gate-based fluorescent probes are powerful tools for the discriminative sensing of multiple signaling molecules that are expressed in concert during the progression of many diseases such as inflammation, cancer, aging, and other disorders. To achieve logical sensing, multiple functional groups are introduced to the different substitution sites of a single fluorescent dye, which increases the complexity of chemical synthesis. Herein, we report a simple strategy that incorporates just one responsive unit into a hemicyanine dye achieving the logic gate-based sensing of two independent analytes. We introduce boronic acid to hemicyanine to quench the fluorescence, and in the presence of hydrogen peroxide (H2O2), the fluorescence is recovered due to removal of the boronate. Interestingly, the subsequent decrease in pH turned the red fluorescence of hemicyanine to green emissive because of protonation of the phenolic alcohol. This unique feature of the probe enables us to construct "INHIBIT" and "AND" logical gates for the accurate measuring of intracellular H2O2 and acidic pH in tandem. This study offers insight into the simple construction of logic-gate based fluorescent probes for the tandem sensing of multiple analytes that are correlatively produced during disease progression.
Collapse
Affiliation(s)
- Hai-Hao Han
- School of Life Sciences, Ludong University, Yantai, Shandong, 264025, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China; Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Meng-Jiao Liu
- School of Life Sciences, Ludong University, Yantai, Shandong, 264025, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
| | - Weijian Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China.
| | - Lu-Lu Sun
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xiuhua Ma
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China.
| | - Hongjin Qiao
- School of Life Sciences, Ludong University, Yantai, Shandong, 264025, China.
| | - Shasha Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China.
| | - Jianming Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China.
| | - Xianzhi Chai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| | - Zhenyong Wu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China; The International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| |
Collapse
|
5
|
Lin S, Ye C, Lin Z, Huang L, Li D. Recent progress of near-infrared fluorescent probes in the determination of reactive oxygen species for disease diagnosis. Talanta 2024; 268:125264. [PMID: 37832458 DOI: 10.1016/j.talanta.2023.125264] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023]
Abstract
Reactive oxygen species (ROS), a chemically defined group of reactive molecules derived from molecular oxygen, are involved in a variety of physiological and pathological processes, including immune defense, cellular metabolism, and other physiological processes. To access their detailed function in these processes, it is critical to establish rapid, accurate and in situ assays for these species in vivo. Among the potential assays, fluorescent probes are considered as the most promising candidate to monitor the biological ROS in vivo with great spatial and temporal resolution and are extensively used as an excellent tool in modern redox biology discovery. Recently, abundant fluorescent probes have been successively developed for in vitro or intracellular detection of ROS, but most of them could not be used for in vivo imaging due to their intrinsic shortcomings such as short emission wavelengths, phototoxicity and poor tissue penetration. Recent development of fluorescent ROS probes with near-infrared emission aim to address these concerns to develop practical assays. Herein, we review recent developments of ROS-sensitive near-infrared fluorescent probes, with an emphasis on the design, synthesis, characteristics of fluorescent probes, as well as their applications. We hope this review will aid the development of a new generation of efficient, sensitive and biocompatible fluorescent probes for in vivo ROS detection.
Collapse
Affiliation(s)
- Shufang Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, 350117, PR China
| | - Chenqian Ye
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, 350117, PR China
| | - Zengyan Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, 350117, PR China
| | - Luqiang Huang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, PR China.
| | - Daliang Li
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, 350117, PR China.
| |
Collapse
|
6
|
Wu Y, Sun LL, Han HH, He XP, Cao W, James TD. Selective FRET nano probe based on carbon dots and naphthalimide-isatin for the ratiometric detection of peroxynitrite in drug-induced liver injury. Chem Sci 2024; 15:757-764. [PMID: 38179535 PMCID: PMC10762965 DOI: 10.1039/d3sc05010f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Drug-induced liver injury (DILI) is the most common cause for acute liver failure in the USA and Europe. However, most of DILI cases can recover or be prevented if treatment by the offending drug is discontinued. Recent research indicates that peroxynitrite (ONOO-) can be a potential indicator to diagnose DILI at an early stage. Therefore, the establishment of an assay to detect and track ONOO- in DILI cases is urgently needed. Here, a FRET-based ratiometric nano fluorescent probe CD-N-I was developed to detect ONOO- with high selectivity and excellent sensitivity. This probe consists of carbon dots and a naphthalimide-isatin peroxynitrite sensing system assembled based on electrostatic interactions. Using CD-N-I we were able to detect exogenous ONOO- in live cells and endogenous ONOO- in APAP-induced liver injury of HepG2 cells.
Collapse
Affiliation(s)
- Yueci Wu
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Lu-Lu Sun
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery Yantai Shandong 264117 P. R. China
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 P. R. China
| | - Hai-Hao Han
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery Yantai Shandong 264117 P. R. China
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd Shanghai 200237 P. R. China
- The International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital Shanghai 200438 P. R. China
| | - Weiguo Cao
- Department of Chemistry, Shanghai University Shanghai 200444 P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA2 7AY UK
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 P. R. China
| |
Collapse
|
7
|
Yang W, Liu R, Yin X, Wu K, Yan Z, Wang X, Fan G, Tang Z, Li Y, Jiang H. Novel Near-Infrared Fluorescence Probe for Bioimaging and Evaluating Superoxide Anion Fluctuations in Ferroptosis-Mediated Epilepsy. Anal Chem 2023; 95:12240-12246. [PMID: 37556358 DOI: 10.1021/acs.analchem.3c00852] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Ferroptosis is an iron-regulated, caspase-mediated pathway of cell death that is associated with the excessive aggregation of lipid-reactive oxygen species and is extensively involved in the evolution of many diseases, including epilepsy. The superoxide anion (O2•-), as the primary precursor of ROS, is closely related to ferroptosis-mediated epilepsy. Therefore, it is crucial to establish a highly effective and convenient method for the real-time dynamic monitoring of O2•- during the ferroptosis process in epilepsy for the diagnosis and therapy of ferroptosis-mediated epilepsy. Nevertheless, no probes for detecting O2•- in ferroptosis-mediated epilepsy have been reported. Herein, we systematically conceptualized and developed a novel near-infrared (NIR) fluorescence probe, NIR-FP, for accurately tracking the fluctuation of O2•- in ferroptosis-mediated epilepsy. The probe showed exceptional sensitivity and outstanding selectivity toward O2•-. In addition, the probe has been utilized effectively to bioimage and evaluate endogenous O2•- variations in three types of ferroptosis-mediated epilepsy models (the kainic acid-induced chronic epilepsy model, the pentylenetetrazole-induced acute epilepsy model, and the pilocarpine-induced status epilepticus model). The above applications illustrated that NIR-FP could serve as a reliable and suitable tool for guiding the accurate diagnosis and therapy of ferroptosis-mediated epilepsy.
Collapse
Affiliation(s)
- Wenjie Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ruixin Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoyi Yin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ke Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhi Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoming Wang
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhixin Tang
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunlun Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
8
|
Geng Y, Wang Z, Zhou J, Zhu M, Liu J, James TD. Recent progress in the development of fluorescent probes for imaging pathological oxidative stress. Chem Soc Rev 2023. [PMID: 37190785 DOI: 10.1039/d2cs00172a] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Oxidative stress is closely related to the physiopathology of numerous diseases. Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) are direct participants and important biomarkers of oxidative stress. A comprehensive understanding of their changes can help us evaluate disease pathogenesis and progression and facilitate early diagnosis and drug development. In recent years, fluorescent probes have been developed for real-time monitoring of ROS, RNS and RSS levels in vitro and in vivo. In this review, conventional design strategies of fluorescent probes for ROS, RNS, and RSS detection are discussed from three aspects: fluorophores, linkers, and recognition groups. We introduce representative fluorescent probes for ROS, RNS, and RSS detection in cells, physiological/pathological processes (e.g., Inflammation, Drug Induced Organ Injury and Ischemia/Reperfusion Injury etc.), and specific diseases (e.g., neurodegenerative diseases, epilepsy, depression, diabetes and cancer, etc.). We then highlight the achievements, current challenges, and prospects for fluorescent probes in the pathophysiology of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yujie Geng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiaying Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Mingguang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
9
|
Niu L, Cao Q, Zhang T, Zhang Y, Liang T, Wang J. Simultaneous detection of mitochondrial viscosity and peroxynitrite in livers from subjects with drug-induced fatty liver disease using a novel fluorescent probe. Talanta 2023; 260:124591. [PMID: 37141820 DOI: 10.1016/j.talanta.2023.124591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Drug-induced fatty liver disease (DIFLD) is a basic clinicopathological example of drug-induced liver injury (DILI). Some drugs can inhibit β-oxidation in hepatocyte mitochondria, leading to steatosis in the liver. Additionally, drug-induced inhibition of β-oxidation and the electron transport chain (ETC) can lead to increased production of reactive oxygen species (ROS) such as peroxynitrite (ONOO-). Therefore, it is reasonable to suspect that compared to a healthy liver, viscosity and ONOO- levels are elevated in livers during DIFLD. A novel, smart, dual-response fluorescent probe-Mito-VO-was designed and synthesized for the simultaneous detection of viscosity and ONOO- content. This probe had a large emission shift of 293 nm and was capable of monitoring the viscosity of, and the ONOO- content in, cell and animal models alike, either individually or simultaneously. For the first time, Mito-VO was successfully used to demonstrate the elevated viscosity and the amount of ONOO- in livers from mice with DIFLD.
Collapse
Affiliation(s)
- Linqiang Niu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China
| | - Qijuan Cao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China
| | - Tian Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China
| | - Yahong Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China
| | - Tingting Liang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China.
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
10
|
Han HH, Wang HM, Jangili P, Li M, Wu L, Zang Y, Sedgwick AC, Li J, He XP, James TD, Kim JS. The design of small-molecule prodrugs and activatable phototherapeutics for cancer therapy. Chem Soc Rev 2023; 52:879-920. [PMID: 36637396 DOI: 10.1039/d2cs00673a] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cancer remains as one of the most significant health problems, with approximately 19 million people diagnosed worldwide each year. Chemotherapy is a routinely used method to treat cancer patients. However, current treatment options lack the appropriate selectivity for cancer cells, are prone to resistance mechanisms, and are plagued with dose-limiting toxicities. As such, researchers have devoted their attention to developing prodrug-based strategies that have the potential to overcome these limitations. This tutorial review highlights recently developed prodrug strategies for cancer therapy. Prodrug examples that provide an integrated diagnostic (fluorescent, photoacoustic, and magnetic resonance imaging) response, which are referred to as theranostics, are also discussed. Owing to the non-invasive nature of light (and X-rays), we have discussed external excitation prodrug strategies as well as examples of activatable photosensitizers that enhance the precision of photodynamic therapy/photothermal therapy. Activatable photosensitizers/photothermal agents can be seen as analogous to prodrugs, with their phototherapeutic properties at a specific wavelength activated in the presence of disease-related biomarkers. We discuss each design strategy and illustrate the importance of targeting biomarkers specific to the tumour microenvironment and biomarkers that are known to be overexpressed within cancer cells. Moreover, we discuss the advantages of each approach and highlight their inherent limitations. We hope in doing so, the reader will appreciate the current challenges and available opportunities in the field and inspire subsequent generations to pursue this crucial area of cancer research.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China. .,State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Han-Min Wang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Mingle Li
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Yi Zang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,Lingang laboratory, Shanghai 201203, China
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Jia Li
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China. .,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 200438, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
11
|
Kannan S, Maayuri R, Shanmugaraju S. Terpyridine-4-amino-1,8-naphthalimide chemosensor for discriminative fluorescent sensing of divalent metal cations at ppb level of sensitivity. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
12
|
Rong X, Liu C, Li X, Zhu H, Wang K, Zhu B. Recent advances in chemotherapy-based organic small molecule theranostic reagents. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Sufian A, Bhattacherjee D, Barman P, Srivastava A, Thummer RP, Bhabak KP. Stimuli-responsive prodrug of non-steroidal anti-inflammatory drug diclofenac: self-immolative drug release with turn-on near-infrared fluorescence. Chem Commun (Camb) 2022; 58:7833-7836. [PMID: 35748501 DOI: 10.1039/d2cc02132c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species (ROS)-responsive near infrared (NIR) fluorogenic prodrug DCI-ROS is developed for the self-immolative release of diclofenac (DCF) with turn-on fluorescence. The non-toxic prodrug exhibited turn-on red fluorescence with endogenous ROS in cancer cells and inhibited COX-2 expression in the inflammation-induced macrophage cells. The prodrug strategy thus would be helpful for the controlled fluorogenic delivery of DCF for inflammatory diseases.
Collapse
Affiliation(s)
- Abu Sufian
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Debojit Bhattacherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.,Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Pallavi Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Abhay Srivastava
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Rajkumar P Thummer
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.,Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.,Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
14
|
Wang Y, Li J, Pei Z, Pei Y. A glutathione activatable bioprobe for detection of hepatocellular carcinoma cells in peripheral blood via carbohydrate-protein interaction. Anal Chim Acta 2022; 1221:340106. [DOI: 10.1016/j.aca.2022.340106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 11/01/2022]
|
15
|
Wang XB, Li HJ, Li Q, Ding Y, Hu C, Wu YC. A specifically triggered turn-on fluorescent probe platform and its visual imaging of HClO in cells, arthritis and tumors. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127874. [PMID: 34852940 DOI: 10.1016/j.jhazmat.2021.127874] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Understanding disease-related processes at the molecular level is of great importance for the prevention and treatment of diseases. However, due to the lack of effective analytical tools, it is challenging to gain insight into the relationships between a specific bioactive molecule and the associated disease. Herein, a rapid turn-on resorufin-based fluorescent probe platform utilizing the HClO-specific oxidative cleavage of the amide was constructed, allowing the visualization of HClO in vitro and in vivo. These probes could quickly respond to HClO (< 50 s) with high selectivity and sensitivity (12-153 nM). The probe REClO-6 had the fastest response (30 s) and the highest sensitivity (12 nM), and was successfully used for the imaging of endogenous and exogenous HClO in cells and zebrafish. Notably, it was also successfully applied to the imaging of HClO in mouse arthritis and solid tumors. This study provided a rapid imaging analysis tool, which would be used to investigate the relationship between HClO and the disease-related physiological processes.
Collapse
Affiliation(s)
- Xiao-Bo Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China.
| | - Qinghao Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China
| | - Yufan Ding
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China
| | - Chenxi Hu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China; Henan Key Laboratory of Biomolecular Recognition and Sensing (Shangqiu Normal University), Shangqiu 476000, China
| |
Collapse
|
16
|
Yuan M, Fang X, Wu Y, Xu Y, Feng H, Mu J, Chen Z, Lin Y, Fu Q, Du W, Yang H, Song J. Activatable Nanoprobe with Aggregation-Induced Dual Fluorescence and Photoacoustic Signal Enhancement for Tumor Precision Imaging and Radiotherapy. Anal Chem 2022; 94:5204-5211. [PMID: 35306819 DOI: 10.1021/acs.analchem.2c00340] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Owing to the high sensitivity and high spatial resolution, fluorescence (FL) imaging has been widely applied for visualizing biological processes. To gain insight into molecular events on deeper tissues, photoacoustic (PA) imaging with better deep-tissue imaging capability can be incorporated to provide complementary visualization and quantitative information on the pathological status. However, the development of activatable imaging probes to achieve both FL and PA signal amplification remains challenging because the enhancement of light absorption in PA imaging often caused the quenching of FL signal. Herein, we first developed a caspase-3 enzyme activatable nanoprobe of a nanogapped gold nanoparticle coated with AIE molecule INT20 and DEVD peptides (AuNNP@DEVD-INT20) for tumor FL and PA imaging and subsequent imaging-guided radiotherapy. The nanoprobe could interact with GSH and caspase-3 enzyme to liberate INT20 molecules, leading to AIE. Simultaneously, the in situ self-assembly of AuNPs was achieved through the cross-linking reaction between the sulfhydryl and the maleimide, resulting in ratiometric PA imaging in tumor. Remarkably, the nanoprobe can generate richful ROS for cancer radiotherapy under X-ray irradiation. The platform not only achieves the aggregation-induced FL and PA signal enhancement but also provides a general strategy for imaging of various biomarkers, eventually benefiting precise cancer therapy.
Collapse
Affiliation(s)
- Meng Yuan
- MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiao Fang
- MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ying Wu
- MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yuanji Xu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Hongjuan Feng
- MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhongxiang Chen
- MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yuhong Lin
- MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qinrui Fu
- MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wei Du
- MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huanghao Yang
- MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jibin Song
- MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
17
|
Endogenous peroxynitrite activated fluorescent probe for revealing anti‐tuberculosis drug induced hepatotoxicity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Liang T, Qiang T, Ren L, Cheng F, Wang B, Li M, Hu W, James TD. Near-infrared fluorescent probe for hydrogen sulfide: high-fidelity ferroptosis evaluation in vivo during stroke. Chem Sci 2022; 13:2992-3001. [PMID: 35382463 PMCID: PMC8905919 DOI: 10.1039/d1sc05930k] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Ferroptosis is closely associated with cancer, neurodegenerative diseases and ischemia-reperfusion injury and the detection of its pathological process is very important for early disease diagnosis. Fluorescence based sensing technologies have become excellent tools due to the real-time detection of cellular physiological or pathological processes. However, to date the detection of ferroptosis using reducing substances as markers has not been achieved since the reducing substances are not only present at extremely low concentrations during ferroptosis but also play a key role in the further development of ferroptosis. Significantly, sensors for reducing substances usually consume reducing substances, instigating a redox imbalance, which further aggravates the progression of ferroptosis. In this work, a H2S triggered and H2S releasing near-infrared fluorescent probe (HL-H2S) was developed for the high-fidelity in situ imaging of ferroptosis. In the imaging process, HL-H2S consumes H2S and releases carbonyl sulfide, which is then catalyzed by carbonic anhydrase to produce H2S. Importantly, this strategy does not intensify ferroptosis since it avoids disruption of the redox homeostasis. Furthermore, using erastin as an inducer for ferroptosis, the observed trends for Fe2+, MDA, and GSH, indicate that the introduction of the HL-H2S probe does not exacerbate ferroptosis. In contrast, ferroptosis progression was significantly promoted when the release of H2S from HL-H2S was inhibited using AZ. These results indicate that the H2S triggered and H2S releasing fluorescent probe did not interfere with the progression of ferroptosis, thus enabling high-fidelity in situ imaging of ferroptosis. A H2S triggered and H2S releasing near-infrared fluorescent probe (HL-H2S) was developed. HL-H2S does not interfere with the progression of ferroptosis by consuming H2S, thus enabling high-fidelity in situ imaging of ferroptosis.![]()
Collapse
Affiliation(s)
- Tianyu Liang
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Longfang Ren
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Fei Cheng
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Baoshuai Wang
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Mingli Li
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wei Hu
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Department of Chemistry, University of Bath, Bath, BA27AY, UK
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath, BA27AY, UK
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
19
|
Liang T, Zhang D, Hu W, Tian C, Zeng L, Wu T, Lei D, Qiang T, Yang X, Sun X. A dual lock-and-key two photon fluorescence probe in response to hydrogen peroxide and viscosity: Application in cellular imaging and inflammation therapy. Talanta 2021; 235:122719. [PMID: 34517587 DOI: 10.1016/j.talanta.2021.122719] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Here, a dual lock-and-key fluorescence probe was developed for visualizing the inflammatory process in myocardial H9C2 cells. The probe possessed two-photon properties, viscosity sensitivity, and hydrogen peroxide (H2O2) responsiveness. A thiocarbamate spacer between fluorophore and H2O2 responsive unit enabled the release of carbonyl sulfide (COS). This rapidly converts to the anti-inflammatory hydrogen sulfide (H2S) by the ubiquitous enzyme carbon anhydrase. The probe displayed a dual response towards hydrogen peroxide and viscosity in vitro. No obvious fluorescence changes were observed towards either hydrogen peroxide or viscosity alone. In cellular experiments, the probe demonstrated good biocompatibility, low toxicity, and was shown responses towards exogenous and endogenous hydrogen peroxide under viscosity conditions. LPS induced cell inflammation showed it was able to effectively alleviate the inflammation-caused damage by releasing H2S and eliminating H2O2. The new protocol demonstrates its promising to achieve diagnosis and treatment of cellular inflammatory process.
Collapse
Affiliation(s)
- Tianyu Liang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Dongliang Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi 'an, 710032, China
| | - Wei Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chenyang Tian
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi 'an, 710032, China
| | - Lingyu Zeng
- Department of Chemistry, The University of Texas at Austin, Texas, 78712, United States
| | - Tianhong Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dongqing Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi 'an, 710032, China.
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
20
|
Wang XB, Zhang DL, Li HJ, Lu X, Liu Q, Wu YC. Rational design of an HClO-specific triggered self-immolative fluorescent turn-on sensor and its bioimaging applications. J Mater Chem B 2021; 9:8793-8800. [PMID: 34632477 DOI: 10.1039/d1tb01721g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of a rapid and intuitive method for the detection of a specific small molecule biomarker is important for understanding the pathogenesis of relevant diseases. Described here is the design and evaluation of an HClO-specific triggered self-immolative fluorescent sensor (RESClO) based on the structure of an N-protected Resorufin dye. Due to the interrupted π-conjugated structure of the Resorufin dye, the free sensor showed very weak absorption and fluorescence. It can quickly complete the response to HClO (within 10 s) with high selectivity and sensitivity (LOD = 16.8 nM) in aqueous solution. The sensor can be made into test strips to quickly detect HClO in the environment by obvious changes in color and fluorescence. It was successfully used for bioimaging of exogenous and endogenous HClO in cells and zebra fish. More importantly, it can also be used for visual imaging of mouse arthritis models. Thus, sensor RESClO can provide a simple and promising visual analytical tool for the detection of HClO in the environment and the early diagnosis of HClO-mediated related diseases.
Collapse
Affiliation(s)
- Xiao-Bo Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China. .,Henan Key Laboratory of Biomolecular Recognition and Sensing (Shangqiu Normal University), Shangqiu 476000, China
| | - Da-Long Zhang
- Tianjin Disha Pharmaceutical Technology Development Co., Ltd, Tianjin 300071, China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China.
| | - Xuhao Lu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China.
| | - Quanze Liu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China.
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China. .,Henan Key Laboratory of Biomolecular Recognition and Sensing (Shangqiu Normal University), Shangqiu 476000, China
| |
Collapse
|
21
|
Hu XL, Shang Y, Yan KC, Sedgwick AC, Gan HQ, Chen GR, He XP, James TD, Chen D. Low-dimensional nanomaterials for antibacterial applications. J Mater Chem B 2021; 9:3640-3661. [PMID: 33870985 DOI: 10.1039/d1tb00033k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The excessive use of antibiotics has led to a rise in drug-resistant bacteria. These "superbugs" are continuously emerging and becoming increasingly harder to treat. As a result, new and effective treatment protocols that have minimal risks of generating drug-resistant bacteria are urgently required. Advanced nanomaterials are particularly promising due to their drug loading/releasing capabilities combined with their potential photodynamic/photothermal therapeutic properties. In this review, 0-dimensional, 1-dimensional, 2-dimensional, and 3-dimensional nanomaterial-based systems are comprehensively discussed for bacterial-based diagnostic and treatment applications. Since the use of these platforms as antibacterials is relatively new, this review will provide appropriate insight into their construction and applications. As such, we hope this review will inspire researchers to explore antibacterial-based nanomaterials with the aim of developing systems for clinical applications.
Collapse
Affiliation(s)
- Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Ying Shang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Kai-Cheng Yan
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China.
| |
Collapse
|
22
|
Wang M, Wang C, Song W, Zhong W, Sun T, Zhu J, Wang J. A novel borate fluorescent probe for rapid selective intracellular peroxynitrite imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119398. [PMID: 33440285 DOI: 10.1016/j.saa.2020.119398] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/06/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Peroxynitrite (ONOO-) is one of the species of reactive nitrogen (RNS), which plays an important role in antibacterial activity and signal transduction and other physiological and pathological processes. In this paper, based on the benzyl borate group, a new fluorescent probe capable of detecting ONOO- with high selectivity and sensitivity is designed, and the possible mechanism of the interaction between probe and ONOO- is proposed. The probe shows high fluorescence response to ONOO- in a wide pH range (7.0-11.5). Moreover, the probe exhibit good permeability, and the content of ONOO- in cancer cells and normal cells was successfully monitored.
Collapse
Affiliation(s)
- Minmin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China; Nantong Key Laboratory of Intelligent and New Energy Materials, PR China
| | - Chun Wang
- School of Textiles, Nantong University, Nantong 226019, PR China; Nantong Key Laboratory of Intelligent and New Energy Materials, PR China
| | - Wenwu Song
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Weiting Zhong
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Tongming Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China.
| | - Jinli Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China; Nantong Key Laboratory of Intelligent and New Energy Materials, PR China.
| |
Collapse
|
23
|
Wang Z, Wang W, Wang P, Song X, Mao Z, Liu Z. Highly Sensitive Near-Infrared Imaging of Peroxynitrite Fluxes in Inflammation Progress. Anal Chem 2021; 93:3035-3041. [PMID: 33494590 DOI: 10.1021/acs.analchem.0c05118] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammation is an important protection reaction in living organisms associated with many diseases. Since peroxynitrite (ONOO-) is engaged in the inflammatory processes, illustrating the key nexus between ONOO- and inflammation is significant. Due to the lack of sensitive ONOO- in vivo detection methods, the research still remains at its infancy. Herein, a highly sensitive NIR fluorescence probe DDAO-PN for in vivo detection of ONOO- in inflammation progress was reported. The probe responded to ONOO- with significant NIR fluorescence enhancement at 657 nm (84-fold) within 30 s in solution. Intracellular imaging of exogenous ONOO- with the probe demonstrated a 68-fold fluorescence increase (F/F0). Impressively, the probe can in vivo detect ONOO- fluxes in LPS-induced rear leg inflammation with a 4.0-fold fluorescence increase and LPS-induced peritonitis with an 8.0-fold fluorescence increase The remarkable fluorescence enhancement and quick response enabled real-time tracking of in vivo ONOO- with a large signal-to-noise (S/N) ratio. These results clearly denoted that DDAO-PN was able to be a NIR fluorescence probe for in vivo detection and high-fidelity imaging of ONOO- with high sensitivity and will boost the research of inflammation-related diseases.
Collapse
Affiliation(s)
- Zhao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Weiwei Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Pengzhan Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xinjian Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhiqiang Mao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.,Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|