1
|
Liu M, Chen YC, Mondal A, Wang H, Tong ML, Layfield RA, Guo FS. η 6-Benzene Tetra-Anion Complexes of Early and Late Rare-Earth Metals. J Am Chem Soc 2025; 147:11359-11367. [PMID: 40114314 PMCID: PMC11969546 DOI: 10.1021/jacs.5c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
A novel synthetic route to the triple-decker benzene tetra-anion complexes [(η5-C5iPr5)M(μ:η6:η6-C6H6)M(η5-C5iPr5)] is reported for a range of early and late rare-earth elements, i.e., M = Y, La, Sm, Gd, and Dy (1M). The lanthanum complex 1La is the first benzene tetra-anion complex of the largest rare-earth element. Aromaticity in the 10π-electron benzene ligands is confirmed through crystallographic studies of all compounds and nucleus-independent chemical shift calculations on 1Y and 1La. Analysis of the bonding in 1Y and 1La using density functional theory revealed strong covalency in the metal-benzene interactions, with very similar contributions from the metal 4d/5d orbitals, respectively, and the benzene π* orbitals. Magnetic susceptibility measurements on 1Sm, 1Gd, and 1Dy are also consistent with the presence of a benzene tetra-anion ligand. The origins of the appreciable exchange coupling constant of Jexch = -3.35 cm-1 (-2J formalism) in 1Gd are established through a computational study of the interacting magnetic orbitals. The dynamic magnetic properties of 1Dy are also described. The clear absence of SMM behavior in the dysprosium complex is explained using multireference calculations and an ab initio ligand-field theory description of the 4f orbitals, which clearly show that the benzene tetra-anion ligand provides a dominant equatorial contribution.
Collapse
Affiliation(s)
- Ming Liu
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China
| | - Yan-Cong Chen
- Key Laboratory
of Bioinorganic and Synthetic Chemistry of the Ministry of Education,
School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Arpan Mondal
- Department
of Chemistry, University of Sussex, Falmer, Brighton BN1 9QR, U.K.
| | - Huan Wang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China
| | - Ming-Liang Tong
- Key Laboratory
of Bioinorganic and Synthetic Chemistry of the Ministry of Education,
School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Richard A. Layfield
- Department
of Chemistry, University of Sussex, Falmer, Brighton BN1 9QR, U.K.
| | - Fu-Sheng Guo
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China
| |
Collapse
|
2
|
Vidal L, Barrena-Espés D, Echeverría J, Munárriz J, Pendás ÁM. Deciphering Pyramidanes: A Quantum Chemical Topology Approach. Chemphyschem 2024; 25:e202400329. [PMID: 39041294 DOI: 10.1002/cphc.202400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
C[C4H4], the simplest compound of the [4]-pyramidane family, has so far eluded experimental characterization, although several of its analogs, E[C4(SiMe3)4] in which the E apex atom is a tetrel group element, have been successfully prepared. The non-classical bonding mode of E, similar to that found in propellanes, has prompted a considerable number of theoretical studies to unravel the nature of the apex-base interaction. Here, we contribute to this knowledge by analyzing the electron localization function (ELF) and classical QTAIM descriptors; as well the statistical distribution of electrons in atomic regions by means of the so-called electron distribution functions (EDFs), calculation of multicenter indices (MCI) as aromaticity descriptors and by performing orbital invariant energy decompositions with the interacting quantum atoms (IQA) approach on a series of E[C4(SiMe3)4] compounds. We find that the bonding evolves from covalent to electrostatic as E changes from C to Pb, with an anomaly when E=Si, which is shown to be the most charged moiety, compatible with an aromatic [C4(SiMe3)4]2- scaffold in the pyramidane base.
Collapse
Affiliation(s)
- Lucía Vidal
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, Oviedo, 33006, Spain
- Departamento de Química Inorgánica and Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Daniel Barrena-Espés
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, Oviedo, 33006, Spain
| | - Jorge Echeverría
- Departamento de Química Inorgánica and Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Julen Munárriz
- Departamento de Química Física and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Ángel Martín Pendás
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, Oviedo, 33006, Spain
| |
Collapse
|
3
|
Lee VY, Gapurenko OA. Pyramidanes: newcomers to the anti-van't Hoff-Le Bel family. Chem Commun (Camb) 2023; 59:10067-10086. [PMID: 37551825 DOI: 10.1039/d3cc02757k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
In this feature article, an overview of the chemistry of pyramidanes, as a novel class of main group element clusters, is given. A general introduction sets the scene, briefly presenting the non-classical pyramidal geometry of tetracoordinate carbon, as opposed to the classical tetrahedral configuration. Pyramidanes, as the simplest organic compounds possessing a pyramidal carbon atom, are then discussed from both computational and experimental viewpoints, to show the theoretical predictions on the stability and thus the feasibility of pyramidanes has finally culminated in the isolation of the first stable representatives of the pyramidane family featuring heavy main group elements at the apex of the square pyramid. Synthetic strategies towards pyramidanes, as well as their peculiar structural features, non-classical bonding situations, and specific reactivity, are presented and discussed in this review.
Collapse
Affiliation(s)
- Vladimir Ya Lee
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan.
| | - Olga A Gapurenko
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov on Don 344090, Russian Federation.
| |
Collapse
|
4
|
Imagawa T, Giarrana L, Andrada DM, Morgenstern B, Nakamoto M, Scheschkewitz D. Stable Silapyramidanes. J Am Chem Soc 2023; 145:4757-4764. [PMID: 36787446 DOI: 10.1021/jacs.2c13530] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Starting from tetrakis(trimethylsilyl)cyclobutadiene and an amidinate-supported silylene of the Roesky-type, a sequence of addition and reduction cleanly gives the elusive silapyramidane via an isolable cyclobutene intermediate with an exocyclic Si═C bond. The silapyramidane features an unusually shielded 29Si NMR resonance at -448.3 ppm for the apex silicon atom. Treatment with Fe2(CO)9 results in the formation of the corresponding silapyramidane-iron complex. Silapyramidane also reacts with the cyclobutadiene starting material to cleanly afford a fluorescent spirobis(silole).
Collapse
Affiliation(s)
- Taiki Imagawa
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany.,Graduate School of Advanced Science and Engineering, Hiroshima University, 739-8526 Higashi-Hiroshima, Japan
| | - Luisa Giarrana
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Diego M Andrada
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Bernd Morgenstern
- Service Center X-ray Diffraction, Saarland University, 66123 Saarbrücken, Germany
| | - Masaaki Nakamoto
- Graduate School of Advanced Science and Engineering, Hiroshima University, 739-8526 Higashi-Hiroshima, Japan
| | - David Scheschkewitz
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
5
|
Tsoureas N, Rajeshkumar T, Townrow OPE, Maron L, Layfield RA. Thorium- and Uranium-Mediated C-H Activation of a Silyl-Substituted Cyclobutadienyl Ligand. Inorg Chem 2022; 61:20629-20635. [PMID: 36484644 PMCID: PMC9768750 DOI: 10.1021/acs.inorgchem.2c03534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclobutadienyl complexes of the f-elements are a relatively new yet poorly understood class of sandwich and half-sandwich organometallic compounds. We now describe cyclobutadienyl transfer reactions of the magnesium reagent [(η4-Cb'''')Mg(THF)3] (1), where Cb'''' is tetrakis(trimethylsilyl)cyclobutadienyl, toward thorium(IV) and uranium(IV) tetrachlorides. The 1:1 stoichiometric reactions between 1 and AnCl4 proceed with intact transfer of Cb'''' to give the half-sandwich complexes [(η4-Cb'''')AnCl(μ-Cl)3Mg(THF)3] (An = Th, 2; An = U, 3). Using a 2:1 reaction stoichiometry produces [Mg2Cl3(THF)6][(η4-Cb'''')An(η3-C4H(SiMe3)3-κ-(CH2SiMe2)(Cl)] (An = Th, [Mg2Cl3(THF)6][4]; An = U [Mg2Cl3(THF)6][5]), in which one Cb'''' ligand has undergone cyclometalation of a trimethylsilyl group, resulting in the formation of an An-C σ-bond, protonation of the four-membered ring, and an η3-allylic interaction with the actinide. Complex solution-phase dynamics are observed with multinuclear nuclear magnetic resonance spectroscopy for both sandwich complexes. A computational analysis of the reaction mechanism leading to the formation of 4 and 5 indicates that the cyclobutadienyl ligands undergo C-H activation across the actinide center.
Collapse
Affiliation(s)
- Nikolaos Tsoureas
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Thayalan Rajeshkumar
- Laboratoire
de Physique et Chimie des Nano-Objets, Institut
National des Sciences Appliquées, Toulouse Cedex 4 31077, France
| | - Oliver P. E. Townrow
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Laurent Maron
- Laboratoire
de Physique et Chimie des Nano-Objets, Institut
National des Sciences Appliquées, Toulouse Cedex 4 31077, France,
| | - Richard A. Layfield
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.,
| |
Collapse
|
6
|
Lin X, Mo Y. On the Bonding Nature in the Crystalline Tri-Thorium Cluster: Core-Shell Syngenetic σ-Aromaticity. Angew Chem Int Ed Engl 2022; 61:e202209658. [PMID: 35856937 PMCID: PMC9541753 DOI: 10.1002/anie.202209658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 11/10/2022]
Abstract
A unique thorium-thorium bond was observed in the crystalline tri-thorium cluster [{Th(η8 -C8 H8 )(μ3 -Cl)2 }3 {K(THF)2 }2 ]∞ , though the claim of σ-aromaticity for Th3 bond has been questioned. Herein, a new type of core-shell syngenetic bonding model is proposed to describe the stability of this tri-thorium cluster. The model involves a 3c-2e bond in the Th3 core and a multicentered (ThCl2 )3 charge-shift bond with 12 electrons scattering along the outer shell. To differentiate the strengths of the 3c-2e bond and the charge-shift bond, the block-localized wavefunction (BLW) method which falls into the ab initio valence bond (VB) theory is employed to construct a strictly core/shell localized state and its contributing covalent resonance structure for the Th3 core bond. By comparing with the σ-aromatic H3 + and nonaromatic Li3 + , the computed resonance energies and extra cyclic resonance energies confirm that this Th3 core bond is truly delocalized and σ-aromatic.
Collapse
Affiliation(s)
- Xuhui Lin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural DrugsSchool of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Yirong Mo
- Department of NanoscienceJoint School of Nanoscience and NanoengineeringUniversity of North Carolina at GreensboroGreensboroNC 27401USA
| |
Collapse
|
7
|
Lin X, Mo Y. On the Bonding Nature in the Crystalline Tri‐Thorium Cluster: Core‐Shell Syngenetic σ‐Aromaticity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuhui Lin
- Southwest Jiaotong University School of Life Science and Engineering CHINA
| | - Yirong Mo
- University of North Carolina at Greensboro Department of Nanoscience 2907 E. Gate City Blvd 27401 Greensboro UNITED STATES
| |
Collapse
|
8
|
Rong Wong Z, Schramm TK, Loipersberger M, Head-Gordon M, Toste FD. Revisiting the Bonding Model for Gold(I) Species: The Importance of Pauli Repulsion Revealed in a Gold(I)-Cyclobutadiene Complex. Angew Chem Int Ed Engl 2022; 61:e202202019. [PMID: 35261142 PMCID: PMC9173747 DOI: 10.1002/anie.202202019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Indexed: 11/12/2022]
Abstract
Understanding the bonding of gold(I) species has been central to the development of gold(I) catalysis. Herein, we present the synthesis and characterization of the first gold(I)-cyclobutadiene complex, accompanied with bonding analysis by state-of-the-art energy decomposition analysis methods. Analysis of possible coordination modes for the new species not only confirms established characteristics of gold(I) bonding, but also suggests that Pauli repulsion is a key yet hitherto overlooked element. Additionally, we obtain a new perspective on gold(I)-bonding by comparison of the gold(I)-cyclobutadiene to congeners stabilized by p-, d-, and f-block metals. Consequently, we refine the gold(I) bonding model, with a delicate interplay of Pauli repulsion and charge transfer as the key driving force for various coordination motifs. Pauli repulsion is similarly determined as a significant interaction in AuI -alkyne species, corroborating this revised understanding of AuI bonding.
Collapse
Affiliation(s)
- Zeng Rong Wong
- Department of Chemistry, University of California, Berkeley 420 Latimer Hall, Berkeley, CA 94720 (USA)
| | - Tim K. Schramm
- Department of Chemistry, University of California, Berkeley 420 Latimer Hall, Berkeley, CA 94720 (USA)
- Department of Chemistry, RWTH Aachen University, Landoltweg 1 Aachen, 52074 (Germany)
| | - Matthias Loipersberger
- Department of Chemistry, University of California, Berkeley 420 Latimer Hall, Berkeley, CA 94720 (USA)
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley 420 Latimer Hall, Berkeley, CA 94720 (USA)
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 70A3307, Berkeley, CA 94720 (USA)
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley 420 Latimer Hall, Berkeley, CA 94720 (USA)
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 70A3307, Berkeley, CA 94720 (USA)
| |
Collapse
|
9
|
Popov IA, Billow BS, Carpenter SH, Batista ER, Boncella JM, Tondreau AM, Yang P. An Allyl Uranium(IV) Sandwich Complex: Are ϕ Bonding Interactions Possible? Chemistry 2022; 28:e202200114. [PMID: 35286723 PMCID: PMC9322041 DOI: 10.1002/chem.202200114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 01/08/2023]
Abstract
A method to explore head-to-head ϕ back-bonding from uranium f-orbitals into allyl π* orbitals has been pursued. Anionic allyl groups were coordinated to uranium with tethered anilide ligands, then the products were investigated by using NMR spectroscopy, single-crystal XRD, and theoretical methods. The (allyl)silylanilide ligand, N-((dimethyl)prop-2-enylsilyl)-2,6-diisopropylaniline (LH), was used as either the fully protonated, singly deprotonated, or doubly deprotonated form, thereby highlighting the stability and versatility of the silylanilide motif. A free, neutral allyl group was observed in UI2 (L1)2 (1), which was synthesized by using the mono-deprotonated ligand [K][N-((dimethyl)prop-2-enyl)silyl)-2,6-diisopropylanilide] (L1). The desired homoleptic sandwich complex U[L2]2 (2) was prepared from all three ligand precursors, but the most consistent results came from using the dipotassium salt of the doubly deprotonated ligand [K]2 [N-((dimethyl)propenidesilyl)-2,6-diisopropylanilide] (L2). This allyl-based sandwich complex was studied by using theoretical techniques with supporting experimental spectroscopy to investigate the potential for phi (ϕ) back-bonding. The bonding between UIV and the allyl fragments is best described as ligand-to-metal electron donation from a two carbon fragment-localized electron density into empty f-orbitals.
Collapse
Affiliation(s)
- Ivan A. Popov
- Theoretical DivisionLos Alamos National LaboratoryLos AlamosNew Mexico87545USA
- Current address: Department of ChemistryThe University of AkronAkronOhio 44325-3601USA
| | - Brennan S. Billow
- Chemistry DivisionLos Alamos National LaboratoryMS J514Los AlamosNew Mexico87545USA
| | | | - Enrique R. Batista
- Theoretical DivisionLos Alamos National LaboratoryLos AlamosNew Mexico87545USA
| | - James M. Boncella
- Department of ChemistryWashington State University and Pacific Northwest National LaboratoryPullmanWashington99164
- 902 Batelle BlvdRichlandWashington99352USA
| | - Aaron M. Tondreau
- Chemistry DivisionLos Alamos National LaboratoryMS J514Los AlamosNew Mexico87545USA
| | - Ping Yang
- Theoretical DivisionLos Alamos National LaboratoryLos AlamosNew Mexico87545USA
| |
Collapse
|
10
|
Wong ZR, Schramm TK, Loipersberger M, Head‐Gordon M, Toste FD. Revisiting the Bonding Model for Gold(I) Species: The Importance of Pauli Repulsion Revealed in a Gold(I)‐Cyclobutadiene Complex. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zeng Rong Wong
- Department of Chemistry University of California, Berkeley 420 Latimer Hall Berkeley CA 94720 USA
| | - Tim K. Schramm
- Department of Chemistry University of California, Berkeley 420 Latimer Hall Berkeley CA 94720 USA
- Department of Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Matthias Loipersberger
- Department of Chemistry University of California, Berkeley 420 Latimer Hall Berkeley CA 94720 USA
| | - Martin Head‐Gordon
- Department of Chemistry University of California, Berkeley 420 Latimer Hall Berkeley CA 94720 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory One Cyclotron Road, MS 70A3307 Berkeley CA 94720 USA
| | - F. Dean Toste
- Department of Chemistry University of California, Berkeley 420 Latimer Hall Berkeley CA 94720 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory One Cyclotron Road, MS 70A3307 Berkeley CA 94720 USA
| |
Collapse
|
11
|
Hsueh FC, Barluzzi L, Keener M, Rajeshkumar T, Maron L, Scopelliti R, Mazzanti M. Reactivity of Multimetallic Thorium Nitrides Generated by Reduction of Thorium Azides. J Am Chem Soc 2022; 144:3222-3232. [PMID: 35138846 DOI: 10.1021/jacs.1c13150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thorium nitrides are likely intermediates in the reported cleavage and functionalization of dinitrogen by molecular thorium complexes and are attractive compounds for the study of multiple bond formation in f-element chemistry, but only one example of thorium nitride isolable from solution was reported. Here, we show that stable multimetallic azide/nitride thorium complexes can be generated by reduction of thorium azide precursors─a route that has failed so far to produce Th nitrides. Once isolated, the thorium azide/nitride clusters, M3Th═N═Th (M = K or Cs), are stable in solutions probably due to the presence of alkali ions capping the nitride, but their synthesis requires a careful control of the reaction conditions (solvent, temperature, nature of precursor, and alkali ion). The nature of the cation plays an important role in generating a nitride product and results in large structural differences with a bent Th═N═Th moiety found in the K-bound nitride as a result of a strong K-nitride interaction and a linear arrangement in the Cs-bound nitride. Reactivity studies demonstrated the ability of Th nitrides to cleave CO in ambient conditions yielding CN-.
Collapse
Affiliation(s)
- Fang-Che Hsueh
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Luciano Barluzzi
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Megan Keener
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Cedex 4 Toulouse, France
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Cedex 4 Toulouse, France
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Boronski JT, Seed JA, Hunger D, Woodward AW, van Slageren J, Wooles AJ, Natrajan LS, Kaltsoyannis N, Liddle ST. A crystalline tri-thorium cluster with σ-aromatic metal-metal bonding. Nature 2021; 598:72-75. [PMID: 34425584 DOI: 10.1038/s41586-021-03888-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
Metal-metal bonding is a widely studied area of chemistry1-3, and has become a mature field spanning numerous d transition metal and main group complexes4-7. By contrast, actinide-actinide bonding, which is predicted to be weak8, is currently restricted to spectroscopically detected gas-phase U2 and Th2 (refs. 9,10), U2H2 and U2H4 in frozen matrices at 6-7 K (refs. 11,12), or fullerene-encapsulated U2 (ref. 13). Furthermore, attempts to prepare thorium-thorium bonds in frozen matrices have produced only ThHn (n = 1-4)14. Thus, there are no isolable actinide-actinide bonds under normal conditions. Computational investigations have explored the probable nature of actinide-actinide bonding15, concentrating on localized σ-, π-, and δ-bonding models paralleling d transition metal analogues, but predictions in relativistic regimes are challenging and have remained experimentally unverified. Here, we report thorium-thorium bonding in a crystalline cluster, prepared and isolated under normal experimental conditions. The cluster exhibits a diamagnetic, closed-shell singlet ground state with a valence-delocalized three-centre-two-electron σ-aromatic bond16,17 that is counter to the focus of previous theoretical predictions. The experimental discovery of actinide σ-aromatic bonding adds to main group and d transition metal analogues, extending delocalized σ-aromatic bonding to the heaviest elements in the periodic table and to principal quantum number six, and constitutes a new approach to elaborate actinide-actinide bonding.
Collapse
Affiliation(s)
- Josef T Boronski
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, UK
| | - John A Seed
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, UK
| | - David Hunger
- Institute of Physical Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Adam W Woodward
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, UK
| | - Joris van Slageren
- Institute of Physical Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Ashley J Wooles
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, UK
| | - Louise S Natrajan
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, UK
| | - Nikolas Kaltsoyannis
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, UK.
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
13
|
|
14
|
Tsoureas N, Mansikkamäki A, Layfield RA. Synthesis, bonding properties and ether activation reactivity of cyclobutadienyl-ligated hybrid uranocenes. Chem Sci 2021; 12:2948-2954. [PMID: 34164062 PMCID: PMC8179396 DOI: 10.1039/d0sc05199c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/07/2021] [Indexed: 11/21/2022] Open
Abstract
A series of hybrid uranocenes consisting of uranium(iv) sandwiched between cyclobutadienyl (Cb) and cyclo-octatetraenyl (COT) ligands has been synthesized, structurally characterized and studied computationally. The dimetallic species [(η4-Cb'''')(η8-COT)U(μ:η2:η8-COT)U(THF)(η4-Cb'''')] (1) forms concomitantly with, and can be separated from, monometallic [(η4-Cb'''')U(THF)(η8-COT)] (2) (Cb'''' = 1,2,3,4-tetrakis(trimethylsilyl)cyclobutadienyl, COT = cyclo-octatetraenyl). In toluene solution at room temperature, 1 dissociates into 2 and the unsolvated uranocene [(η4-Cb'''')U(η8-COT)] (3). By applying a high vacuum, both 1 and 2 can be converted directly into 3. Using bulky silyl substituents on the COT ligand allowed isolation of base-free [(η4-Cb'''')U{η8-1,4-(iPr3Si)2C8H6}] (4), with compounds 3 and 4 being new members of the bis(annulene) family of actinocenes and the first to contain a cyclobutadienyl ligand. Computational studies show that the bonding in the hybrid uranocenes 3 and 4 has non-negligible covalency. New insight into actinocene bonding is provided by the complementary interactions of the different ligands with uranium, whereby the 6d orbitals interact most strongly with the cyclobutadienyl ligand and the 5f orbitals do so with the COT ligands. The redox-neutral activation of diethyl ether by [(η4-Cb'''')U(η8-C8H8)] is also described and represents a uranium-cyclobutadienyl cooperative process, potentially forming the basis of further small-molecule activation chemistry.
Collapse
Affiliation(s)
- Nikolaos Tsoureas
- Department of Chemistry, School of Life Sciences, University of Sussex Brighton BN1 9QJ UK
| | | | - Richard A Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex Brighton BN1 9QJ UK
| |
Collapse
|