1
|
Ding S, Pu Y, Lin J, Zhao H, Tang Q, Wang J. Electrophile-Controlled Regiodivergent Palladium-Catalyzed Imidoylative Spirocyclization of Cyclic Alkenes. Org Lett 2024; 26:1908-1913. [PMID: 38407073 DOI: 10.1021/acs.orglett.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
An intermolecular controllable Pd-catalyzed spirocyclization of isocyano cycloalkenes has been developed, offering efficient and selective approaches toward spirocyclic hydropyrrole scaffolds. 2-Azaspiro-1,7-dienes could be obtained through a "chain-walking" process with aryl/vinyl iodides as electrophiles, while the normal Heck product 2-azaspiro-1,6-dienes were selectively generated when aryl triflates were used as the coupling partner of isocyanides. Mechanistic studies suggested that the counteranion of the Pd(II) intermediate played a crucial role in the regioselectivity control. Dihydropyrrole-fused 5,6,7-membered spirocycles were switchably accessed under mild conditions with wide functional group tolerance.
Collapse
Affiliation(s)
- Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yue Pu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jiao Lin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
2
|
Fan Q, Jiang K, Liu B, Jiang H, Cao X, Yin B. Radical-Dearomative Generation of Cyclohexadienyl Pd(II) toward the 3D Transformation of Nonactivated Phenyl Rings. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307074. [PMID: 38102822 PMCID: PMC10916580 DOI: 10.1002/advs.202307074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/25/2023] [Indexed: 12/17/2023]
Abstract
Traditional palladium-catalyzed dearomatization of (hetero)arenes takes place via an ionic pathway and usually requires elevated temperatures to overcome the energy barrier of the dearomative insertion step. Herein, a combination of the radical and two-electron pathways is disclosed, which enables room temperature dearomative 3D transformations of nonactivated phenyl rings with Pd(0) as the catalyst. Experimental results together with density functional theory (DFT) calculations indicate a versatile π-allyl Pd(II) species, cyclohexadienyl Pd(II), possibly is involved in the dearomatization. This species is generated by combining the cyclohexadienyl radical and Pd(I). The cyclohexadienyl Pd(II) provides chemoselective (carboamination and trieneylation), regioselective (1,2-carboamination), and diastereoselective (carbonyl-group directed face selectivity) conversions.
Collapse
Affiliation(s)
- Qi Fan
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology (SCUT)Guangzhou510640China
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology (SCUT)Guangzhou510640China
| | - Bo Liu
- The Second Clinical Medical Collegeand State Key Laboratory of Dampness Syndrome of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology (SCUT)Guangzhou510640China
| | - Xiaohui Cao
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology (SCUT)Guangzhou510640China
| |
Collapse
|
3
|
Yuan PF, Huang XT, Long L, Huang T, Sun CL, Yu W, Wu LZ, Chen H, Liu Q. Regioselective Dearomative Amidoximation of Nonactivated Arenes Enabled by Photohomolytic Cleavage of N-nitrosamides. Angew Chem Int Ed Engl 2024; 63:e202317968. [PMID: 38179800 DOI: 10.1002/anie.202317968] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Dearomative spirocyclization reactions represent a promising means to convert arenes into three-dimensional architectures; however, controlling the regioselectivity of radical dearomatization with nonactivated arenes to afford the spirocyclizative 1,2-difunctionalization other than its kinetically preferred 1,4-difunctionalization is exceptionally challenging. Here we disclose a novel strategy for dearomative 1,2- or 1,4-amidoximation of (hetero)arenes enabled by direct visible-light-induced homolysis of N-NO bonds of nitrosamides, giving rise to various highly regioselective amidoximated spirocycles that previously have been inaccessible or required elaborate synthetic efforts. The mechanism and origins of the observed regioselectivities were investigated by control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Pan-Feng Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xie-Tian Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Linhong Long
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tao Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Lin Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
4
|
Guan F, Zhou R, Ren X, Guo Z, Wang C, Zhou CY. Asymmetric dearomative cyclopropanation of naphthalenes to construct polycyclic compounds. Chem Sci 2022; 13:13015-13019. [PMID: 36425492 PMCID: PMC9669881 DOI: 10.1039/d2sc04509e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2023] Open
Abstract
Catalytic asymmetric dearomatization (CADA) reactions is an important synthetic method for constructing enantioenriched complex cyclic systems from simple aromatic feedstocks. However, the CADA reactions of nonactivated arenes, such as naphthalenes and benzenes, have been far less explored than those of electronically activated arenes, such as phenols, naphthols and indoles. Herein, we disclose an asymmetric dearomative cyclopropanation of naphthalenes for the rapid construction of polycyclic compounds. With chiral dirhodium carboxylate as a catalyst, the dearomative cyclopropanation proceeded smoothly under mild conditions and afforded benzonorcaradiene-containing tetracycles in good yield and high enantioselectivity (up to 99% ee). Three stereogenic centers, including two all-carbon quaternary centers, were created in the dearomatization reaction. Moreover, a variety of functional groups are well-tolerated in the reaction. The products could be readily converted into other complex polycycles while maintaining the high ee value.
Collapse
Affiliation(s)
- Fujun Guan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 People's Republic of China
| | - Rong Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 People's Republic of China
| | - Xiaoyu Ren
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology Shanxi 030024 People's Republic of China
| | - Zhen Guo
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology Shanxi 030024 People's Republic of China
| | - Chengming Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 People's Republic of China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 People's Republic of China
| |
Collapse
|
5
|
Huang J, Chen LL, Chen ZM. Palladium-Catalyzed Three-Component Cross-Coupling of Conjugated Dienes with Indoles Using Ethynylbenziodazolones as Electrophilic Alkynylating Reagents. Org Lett 2022; 24:5777-5781. [PMID: 35912967 DOI: 10.1021/acs.orglett.2c02275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed regioselective 1,2-alkynyl-carbonalization of conjugated dienes with ethynylbenziodazolone (EBZ) and indoles has been developed for the first time. Various molecules containing alkenyl, alkynyl, and indole groups were readily obtained. Moreover, the resulting products can be applied to various derivatizations. This protocol uses EBZ as an electrophilic alkynylating reagent, avoiding the byproduct of dimerization of alkynes.
Collapse
Affiliation(s)
- Jie Huang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ling-Ling Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
6
|
Li Y, Zhang J, Zhao X. Importance of additive effects on the reactivity of Ag catalyzed domino cyclization: a computational chemistry survey. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Zhen G, Jiang K, Yin B. Progress in Organocatalytic Dearomatization Reactions Catalyzed by Heterocyclic Carbenes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guangjin Zhen
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Kai Jiang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Biaolin Yin
- South China University of Technology Dept. of Chenistry and chemical engineering Wushan Street 510640 Guangzhou CHINA
| |
Collapse
|
8
|
Liang RX, Jia YX. Aromatic π-Components for Enantioselective Heck Reactions and Heck/Anion-Capture Domino Sequences. Acc Chem Res 2022; 55:734-745. [PMID: 35119256 DOI: 10.1021/acs.accounts.1c00781] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Olefin functionalization represents one of the most important synthetic transformations in organic synthesis. Over the past decades, palladium-catalyzed enantioselective Heck reactions, and Heck/anion-capture domino sequences through olefin carbopalladation followed by termination of the resulting alkyl-Pd species have been extensively developed. Extension of the coupling partners from classical olefins to other π-components would enable further advances and open new space in this field. Aromatics are important and easily available bulk chemicals. Dearomative transformation of endocyclic aromatic π-bonds via the Heck reaction pathway provides an efficient and straightforward route to structurally diverse alicyclic compounds. Nevertheless, major challenges for this transformation include aromaticity breaking and reactivity and selectivity issues.Recently, we have engaged in developing catalytic enantioselective dearomative Heck reactions and related domino reactions. A range of heteroarenes and naphthalenes have been employed as novel π-coupling partners in these reactions. Through dearomative migratory insertion of endocyclic aromatic C-C π-bonds followed by interception of the transient alkyl-Pd species, enantioselective Heck reactions, reductive Heck reactions, Heck/anion-capture difunctionalization reactions, and heteroarenyne cycloisomerization reactions have been established. Relying on β-H elimination of the alkyl-Pd intermediate, we realized enantioselective dearomative Heck reactions with a range of aromatic partners, including heterocyclic indoles, pyrroles, furans, benzofurans, and more challenging carbocyclic naphthalenes. In order to avoid the utilization of organohalide electrophiles, heteroarenyne cycloisomerization reaction was developed by merging intermolecular alkyne hydropalladation with intramolecular dearomative Heck reaction. Cycloisomerization of alkyne-tethered indoles delivered chiral indolines in excellent enantioselectivities with 100% atom economy. On the other hand, Heck/anion-capture domino sequences were established through nucleophilic trapping of the alkyl-Pd intermediate. When HCO2Na was employed as a capturing reagent, the enantioselective dearomative reductive Heck reaction of indoles was realized. By employing other nucleophiles, including alkynes, N-sulfonylhydrazones, and organoboron reagents, we developed a series of dearomative difunctionalization reactions. Two vicinal stereocenters with excellent enantio- and diastereoselectivities were constructed in the corresponding Heck/Sonogashira, Heck/vinylation, and Heck/borylation reactions. Moreover, dearomative 1,4-diarylation of naphthalenes was developed through Heck/Suzuki domino reactions, in which competitive C-H arylation and the direct Suzuki reaction were almost fully inhibited in the presence of a spiro-phosphoramidite ligand.In this Account, we provide a panoramic view of our results since 2015 on enantioselective Heck reactions and related domino sequences by extending the coupling partners from classical olefins to aromatic systems. Investigations outlined in this Account established straightforward and efficient access to a variety of structurally diverse chiral heteropolycyclic molecules starting from simple and planar aromatic compounds.
Collapse
Affiliation(s)
- Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| |
Collapse
|
9
|
Zhang E, Chen C, Wang X, Wang J, Shang Y. Palladium-catalyzed dearomative 1,4-arylmethylenation of naphthalenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00266c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient palladium-catalyzed construction of E-exocyclic-double-bond-containing spirooxindoles through 1,4-arylmethylenation of naphthalenes has been developed. Aryl aldehyde-derived N‑tosylhydrazones were successfully applied as carbene precursors to capture the endocyclic π-allylpalladium intermediate, which...
Collapse
|
10
|
Dearomative spirocyclization via visible-light-induced reductive hydroarylation of non-activated arenes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Han XQ, Wang L, Yang P, Liu JY, Xu WY, Zheng C, Liang RX, You SL, Zhang J, Jia YX. Enantioselective Dearomative Mizoroki–Heck Reaction of Naphthalenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao-Qing Han
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
| | - Lei Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Ping Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Jing-Yuan Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
| | - Wei-Yan Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
12
|
Zhu D, Xu W, Pu M, Wu YD, Chi YR, Zhou JS. Asymmetric Domino Heck Arylation and Alkylation of Nonconjugated Dienes: Double C-F···Sodium Attractive Noncovalent Interaction. Org Lett 2021; 23:7064-7068. [PMID: 34469162 DOI: 10.1021/acs.orglett.1c02457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Palladium catalyzes a domino Heck arylation and alkylation of nonconjugated cyclodienes to produce trans isomers of disubstituted cyclohexenes in exceptionally high enantiomeric ratios, reaching 100:1 to 200:1 in many cases. Importantly, the interactions of the two CF bonds of Josiphos and the sodium ion of malonates facilitates stereoselective allylic attack through DFT calculations and experiments. This is a new type of attractive noncovalent interactions found in organometallic catalysis.
Collapse
Affiliation(s)
- Daoyong Zhu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Wenqiang Xu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road,, Nanshan District, Shenzhen 518055, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangmin District, Shenzhen 518107, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangmin District, Shenzhen 518107, China
| | - Yonggui Robin Chi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road,, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
13
|
Liao X, Zhou F, Bin Z, Yang Y, You J. Palladium-Catalyzed Cascade Dearomative Spirocyclization and C-H Annulation of Aromatic Halides with Alkynes. Org Lett 2021; 23:5203-5207. [PMID: 34132559 DOI: 10.1021/acs.orglett.1c01736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Described herein is a palladium-catalyzed intermolecular dearomative annulation of aryl halides with alkynes, which provides a rapid approach to a class of structurally unique spiroembedded polycyclic aromatic compounds. The cascade process is accomplished by a sequential alkyne migratory insertion, Heck-type dearomatization, and C-H bond annulation. Further optoelectronic study indicated this fused spirocyclic scaffold could be a potential host material for OLEDs, as exemplified by a fabricated red PhOLED device with a maximum external quantum efficiency of 23.0%.
Collapse
Affiliation(s)
- Xingrong Liao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Fulin Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
14
|
Liang R, Song L, Lu J, Xu W, Ding C, Jia Y. Palladium‐Catalyzed Enantioselective Heteroarenyne Cycloisomerization Reaction. Angew Chem Int Ed Engl 2021; 60:7412-7417. [DOI: 10.1002/anie.202014796] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Ren‐Xiao Liang
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Ling‐Jie Song
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Jin‐Bo Lu
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Wei‐Yan Xu
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Chao Ding
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Yi‐Xia Jia
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
15
|
Liang R, Song L, Lu J, Xu W, Ding C, Jia Y. Palladium‐Catalyzed Enantioselective Heteroarenyne Cycloisomerization Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ren‐Xiao Liang
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Ling‐Jie Song
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Jin‐Bo Lu
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Wei‐Yan Xu
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Chao Ding
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Yi‐Xia Jia
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
16
|
Li Y, Zhao X. Importance of Counterions in Gold‐hydrogen Bonding Cooperative Catalytic Approach to Spirocyclic Rings: Insights on Mechanism and Origins. ChemCatChem 2020. [DOI: 10.1002/cctc.202001303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yunhe Li
- Institute for Chemical Physics School of Chemistry State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University Xi'an 710049 P.R. China
| | - Xiang Zhao
- Institute for Chemical Physics School of Chemistry State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University Xi'an 710049 P.R. China
| |
Collapse
|