1
|
Konopka M, Halgreen L, Dascalu AE, Chvojka M, Valkenier H. Controlling the transmembrane transport of chloride by dynamic covalent chemistry with azines. Chem Sci 2025; 16:3509-3515. [PMID: 39877820 PMCID: PMC11770589 DOI: 10.1039/d4sc08580a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
Stimuli-responsive transmembrane ion transport has become a prominent area of research due to its fundamental importance in cellular processes and potential therapeutic applications. Commonly used stimuli include pH, light, and reduction or oxidation agents. This paper presents the use of dynamic covalent chemistry to activate and modulate the transmembrane transport of chloride in liposomes. An active chloride transporter was obtained in situ within the lipid bilayer by dynamic azine metathesis. The transport activity was further tuned by changing the structure of the added azines, while the dynamic covalent chemistry could be activated by lowering the pH. This dynamic covalent chemistry opens a new approach towards controlling transmembrane transport.
Collapse
Affiliation(s)
- Marcin Konopka
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| | - Lau Halgreen
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| | - Anca-Elena Dascalu
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| | - Matúš Chvojka
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
- Department of Chemistry and RECETOX Faculty of Science, Masaryk University Brno 62500 Czech Republic
| | - Hennie Valkenier
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| |
Collapse
|
2
|
Rieu T, Osypenko A, Lehn JM. Triple Adaptation of Constitutional Dynamic Networks of Imines in Response to Micellar Agents: Internal Uptake-Interfacial Localization-Shape Transition. J Am Chem Soc 2024; 146:9096-9111. [PMID: 38526415 DOI: 10.1021/jacs.3c14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Understanding the behavior of complex chemical reaction networks and how environmental conditions can modulate their organization as well as the associated outcomes may take advantage of the design of related artificial systems. Microenvironments with defined boundaries are of particular interest for their unique properties and prebiotic significance. Dynamic covalent libraries (DCvLs) and their underlying constitutional dynamic networks (CDNs) have been shown to be appropriate for studying adaptation to several processes, including compartmentalization. However, microcompartments (e.g., micelles) provide specific environments for the selective protection from interfering reactions such as hydrolysis and an enhanced chemical promiscuity due to the interface, governing different processes of network modulation. Different interactions between the micelles and the library constituents lead to dynamic sensing, resulting in different expressions of the network through pattern generation. The constituents integrated into the micelles are protected from hydrolysis and hence preferentially expressed in the network composition at the cost of constitutionally linked members. In the present work, micellar integration was observed for two processes: internal uptake based on hydrophobic forces and interfacial localization relying on attractive electrostatic interactions. The latter drives a complex triple adaptation of the network with feedback on the shape of the self-assembled entity. Our results demonstrate how microcompartments can enforce the expression of constituents of CDNs by reducing the hydrolysis of uptaken members, unravelling processes that govern the response of reactions networks. Such studies open the way toward using DCvLs and CDNs to understand the emergence of complexity within reaction networks by their interactions with microenvironments.
Collapse
Affiliation(s)
- Tanguy Rieu
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Artem Osypenko
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
3
|
Chao X, Johnson TG, Temian MC, Docker A, Wallabregue ALD, Scott A, Conway SJ, Langton MJ. Coupling Photoresponsive Transmembrane Ion Transport with Transition Metal Catalysis. J Am Chem Soc 2024; 146:4351-4356. [PMID: 38334376 PMCID: PMC10885138 DOI: 10.1021/jacs.3c13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Artificial ion transporters have been explored both as tools for studying fundamental ion transport processes and as potential therapeutics for cancer and channelopathies. Here we demonstrate that synthetic transporters may also be used to regulate the transport of catalytic metal ions across lipid membranes and thus control chemical reactivity inside lipid-bound compartments. We show that acyclic lipophilic pyridyltriazoles enable Pd(II) cations to be transported from the external aqueous phase across the lipid bilayer and into the interior of large unilamellar vesicles. In situ reduction generates Pd(0) species, which catalyze the generation of a fluorescent product. Photocaging the Pd(II) transporter allows for photoactivation of the transport process and hence photocontrol over the internal catalysis process. This work demonstrates that artificial transporters enable control over catalysis inside artificial cell-like systems, which could form the basis of biocompatible nanoreactors for applications such as drug synthesis and delivery or to mediate phototargeted catalyst delivery into cells.
Collapse
Affiliation(s)
- Xiangyu Chao
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Toby G. Johnson
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Maria-Carmen Temian
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Andrew Docker
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | | | - Aaron Scott
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Stuart J. Conway
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Chemistry & Biochemistry, University
of California Los Angeles, 607 Charles E. Young Drive East, P.O. Box 951569, Los Angeles, California 90095-1569, United States
| | - Matthew J. Langton
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
4
|
Gabrielli L, Goldin L, Chandrabhas S, Dalla Valle A, Prins LJ. Chemical Information Processing by a Responsive Chemical System. J Am Chem Soc 2024; 146:2080-2088. [PMID: 38214581 PMCID: PMC10811666 DOI: 10.1021/jacs.3c11414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Nature has an extraordinary capacity to precisely regulate the chemical reactivity in a highly complex mixture of molecules that is present in the cell. External stimuli lead to transient up- and downregulation of chemical reactions and provide a means for a cell to process information arriving from the environment. The development of synthetic chemical systems with life-like properties requires strategies that allow likewise control over chemical reactivity in a complex environment. Here, we show a synthetic system that mimics the initial steps that take place when a natural signal transduction pathway is activated. Monophosphate nucleosides act as chemical triggers for the self-assembly of nanoreactors that upregulate chemical reactions between reagents present at low micromolar concentrations. Different nucleotides template different assemblies and hence activate different pathways, thus establishing a distinct connection between input and output molecules. Trigger-induced upregulation of chemical reactivity occurs for only a limited amount of time because the chemical triggers are gradually removed from the system by enzymes. It is shown that the same system transiently produces different output molecules depending on the chemical input that is provided.
Collapse
Affiliation(s)
- Luca Gabrielli
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, Padova 35131, Italy
| | - Lorenzo Goldin
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, Padova 35131, Italy
| | - Sushmitha Chandrabhas
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, Padova 35131, Italy
| | - Andrea Dalla Valle
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, Padova 35131, Italy
| | - Leonard J. Prins
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, Padova 35131, Italy
| |
Collapse
|
5
|
Cougnon FBL, Stefankiewicz AR, Ulrich S. Dynamic covalent synthesis. Chem Sci 2024; 15:879-895. [PMID: 38239698 PMCID: PMC10793650 DOI: 10.1039/d3sc05343a] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/10/2023] [Indexed: 01/22/2024] Open
Abstract
Dynamic covalent synthesis aims to precisely control the assembly of simple building blocks linked by reversible covalent bonds to generate a single, structurally complex, product. In recent years, considerable progress in the programmability of dynamic covalent systems has enabled easy access to a broad range of assemblies, including macrocycles, shape-persistent cages, unconventional foldamers and mechanically-interlocked species (catenanes, knots, etc.). The reversibility of the covalent linkages can be either switched off to yield stable, isolable products or activated by specific physico-chemical stimuli, allowing the assemblies to adapt and respond to environmental changes in a controlled manner. This activatable dynamic property makes dynamic covalent assemblies particularly attractive for the design of complex matter, smart chemical systems, out-of-equilibrium systems, and molecular devices.
Collapse
Affiliation(s)
- Fabien B L Cougnon
- Department of Chemistry and Nanoscience Centre, University of Jyväskylä Jyväskylä Finland
| | - Artur R Stefankiewicz
- Centre for Advanced Technology and Faculty of Chemistry, Adam Mickiewicz University Poznań Poland
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| |
Collapse
|
6
|
Shybeka I, Maynard JRJ, Saidjalolov S, Moreau D, Sakai N, Matile S. Dynamic Covalent Michael Acceptors to Penetrate Cells: Thiol-Mediated Uptake with Tetrel-Centered Exchange Cascades, Assisted by Halogen-Bonding Switches. Angew Chem Int Ed Engl 2022; 61:e202213433. [PMID: 36272154 PMCID: PMC10098706 DOI: 10.1002/anie.202213433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Chalcogen-centered cascade exchange chemistry is increasingly understood to account for thiol-mediated uptake, that is, the ability of reversibly thiol-reactive agents to penetrate cells. Here, reversible Michael acceptors are shown to enable and inhibit thiol-mediated uptake, including the cytosolic delivery of proteins. Dynamic cyano-cinnamate dimers rival the best chalcogen-centered inhibitors. Patterns generated in inhibition heatmaps reveal contributions from halogen-bonding switches that occur independent from the thyroid transporter MCT8. The uniqueness of these patterns supports that the entry of tetrel-centered exchangers into cells differs from chalcogen-centered systems. These results expand the chemical space of thiol-mediated uptake and support the existence of a universal exchange network to bring matter into cells, abiding to be decoded for drug delivery and drug discovery in the broadest sense.
Collapse
Affiliation(s)
- Inga Shybeka
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - John R. J. Maynard
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Saidbakhrom Saidjalolov
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Dimitri Moreau
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Naomi Sakai
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
7
|
Santos T, Pérez-Pérez Y, Rivero DS, Diana-Rivero R, García-Tellado F, Tejedor D, Carrillo R. Dynamic Hydroxyl-Yne Reaction with Phenols. Org Lett 2022; 24:8401-8405. [PMID: 36350079 PMCID: PMC10443044 DOI: 10.1021/acs.orglett.2c03518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 11/11/2022]
Abstract
Dynamic Covalent Chemistry (DCvC) has gained increasing importance in supramolecular chemistry and materials science. Herein we prove the dynamic nature of the exchange between phenols and vinyl ethers. Exchange is fast at room temperature and under mild conditions. The equilibrium constants and the electronic effect of the phenol substituents were calculated. This novel incorporation to the DCvC toolbox could be quite useful, and as a proof it was used for the synthesis of a responsive molecular cage.
Collapse
Affiliation(s)
- Tanausú Santos
- Instituto
Universitario de Bio-Orgánica Antonio González (IUBO),
Universidad de La Laguna, P.O. Box 456, 38206 La Laguna, Tenerife, Spain
| | - Yaiza Pérez-Pérez
- Instituto
de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez
3, 38206 La Laguna, Spain
| | - David S. Rivero
- Instituto
de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez
3, 38206 La Laguna, Spain
| | - Raquel Diana-Rivero
- Instituto
de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez
3, 38206 La Laguna, Spain
| | - Fernando García-Tellado
- Instituto
de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez
3, 38206 La Laguna, Spain
| | - David Tejedor
- Instituto
de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez
3, 38206 La Laguna, Spain
| | - Romen Carrillo
- Instituto
de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez
3, 38206 La Laguna, Spain
| |
Collapse
|
8
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022; 61:e202201168. [PMID: 35447003 DOI: 10.1002/anie.202201168] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Sulfur has been important in dynamic covalent chemistry (DCC) since the beginning of the field. Mainly as part of disulfides and thioesters, dynamic sulfur-based bonds (DSBs) have a leading role in several remarkable reactions. Part of this success is due to the almost ideal properties of DSBs for the preparation of dynamic covalent systems, including high reactivity and good reversibility under mild aqueous conditions, the possibility of exploiting supramolecular interactions, access to isolable structures, and easy experimental control to turn the reaction on/off. DCC is currently witnessing an increase in the importance of DSBs. The chemical flexibility offered by DSBs opens the door to multiple applications. This Review presents an overview of all the DSBs used in DCC, their applications, and remarks on the interesting properties that they confer on dynamic chemical systems, especially those containing several DSBs.
Collapse
Affiliation(s)
- A Gastón Orrillo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| | - Ricardo L E Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| |
Collapse
|
9
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alfredo Gastón Orrillo
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| | - Ricardo L. E. Furlan
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| |
Collapse
|
10
|
Bravin C, Duindam N, Hunter CA. Artificial transmembrane signal transduction mediated by dynamic covalent chemistry. Chem Sci 2021; 12:14059-14064. [PMID: 34760189 PMCID: PMC8565364 DOI: 10.1039/d1sc04741h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022] Open
Abstract
Reversible formation of covalent adducts between a thiol and a membrane-anchored Michael acceptor has been used to control the activation of a caged enzyme encapsulated inside vesicles. A peptide substrate and papain, caged as the mixed disulfide with methane thiol, were encapsulated inside vesicles, which contained Michael acceptors embedded in the lipid bilayer. In the absence of the Michael acceptor, addition of thiols to the external aqueous solution did not activate the enzyme to any significant extent. In the presence of the Michael acceptor, addition of benzyl thiol led to uncaging of the enzyme and hydrolysis of the peptide substrate to generate a fluorescence output signal. A charged thiol used as the input signal did not activate the enzyme. A Michael acceptor with a polar head group that cannot cross the lipid bilayer was just as effective at delivering benzyl thiol to the inner compartment of the vesicles as a non-polar Michael acceptor that can diffuse across the bilayer. The concentration dependence of the output signal suggests that the mechanism of signal transduction is based on increasing the local concentration of thiol present in the vesicles by the formation of Michael adducts. An interesting feature of this system is that enzyme activation is transient, which means that sequential addition of aliquots of thiol can be used to repeatedly generate an output signal.
Collapse
Affiliation(s)
- Carlo Bravin
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Nol Duindam
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
11
|
Martinent R, Tawffik S, López-Andarias J, Moreau D, Laurent Q, Matile S. Dithiolane quartets: thiol-mediated uptake enables cytosolic delivery in deep tissue. Chem Sci 2021; 12:13922-13929. [PMID: 34760179 PMCID: PMC8549803 DOI: 10.1039/d1sc04828g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
The cytosolic delivery of various substrates in 3D multicellular spheroids by thiol-mediated uptake is reported. This is important because most orthodox systems, including polycationic cell-penetrating peptides, fail to deliver efficiently into deep tissue. The grand principles of supramolecular chemistry, that is the pH dependence of dynamic covalent disulfide exchange with known thiols on the transferrin receptor, are proposed to account for transcytosis into deep tissue, while the known but elusive exchange cascades along the same or other partners assure cytosolic delivery in kinetic competition. For quantitative detection in the cytosol, the 2D chloroalkane penetration assay (CAPA) is translated to 3D deep tissue. The targeted delivery of quantum dots, otherwise already troublesome in 2D culture, and the controlled release of mechanophores are realized to exemplify the power of thiol-mediated uptake into spheroids. As transporters, dithiolane quartets on streptavidin templates are introduced as modular motifs. Built from two amino acids only, the varied stereochemistry and peptide sequence are shown to cover maximal functional space with minimal structural change, i.e., constitutional isomers. Reviving a classic in peptide chemistry, this templated assembly of β quartets promises to expand streptavidin biotechnology in new directions, while the discovery of general cytosolic delivery in deep tissue as an intrinsic advantage further enhances the significance and usefulness of thiol-mediated uptake.
Collapse
Affiliation(s)
- Rémi Martinent
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Salman Tawffik
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Javier López-Andarias
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Dimitri Moreau
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Quentin Laurent
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| |
Collapse
|
12
|
Humeniuk H, Gini A, Hao X, Coelho F, Sakai N, Matile S. Pnictogen-Bonding Catalysis and Transport Combined: Polyether Transporters Made In Situ. JACS AU 2021; 1:1588-1593. [PMID: 34723261 PMCID: PMC8549043 DOI: 10.1021/jacsau.1c00345] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 05/16/2023]
Abstract
The combination of catalysis and transport across lipid bilayer membranes promises directional access to a solvent-free and structured nanospace that could accelerate, modulate, and, at best, enable new chemical reactions. To elaborate on these expectations, anion transport and catalysis with pnictogen and tetrel bonds are combined with polyether cascade cyclizations into bioinspired cation transporters. Characterized separately, synergistic anion and cation transporters of very high activity are identified. Combined for catalysis in membranes, cascade cyclizations are found to occur with a formal rate enhancement beyond one million compared to bulk solution and product formation is detected in situ as an increase in transport activity. With this operational system in place, intriguing perspectives open up to exploit all aspects of this unique nanospace for important chemical transformations.
Collapse
|
13
|
Bickerton LE, Johnson TG, Kerckhoffs A, Langton MJ. Supramolecular chemistry in lipid bilayer membranes. Chem Sci 2021; 12:11252-11274. [PMID: 34567493 PMCID: PMC8409493 DOI: 10.1039/d1sc03545b] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Lipid bilayer membranes form compartments requisite for life. Interfacing supramolecular systems, including receptors, catalysts, signal transducers and ion transporters, enables the function of the membrane to be controlled in artificial and living cellular compartments. In this perspective, we take stock of the current state of the art of this rapidly expanding field, and discuss prospects for the future in both fundamental science and applications in biology and medicine.
Collapse
Affiliation(s)
- Laura E Bickerton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Toby G Johnson
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Aidan Kerckhoffs
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
14
|
Santos T, Rivero DS, Pérez‐Pérez Y, Martín‐Encinas E, Pasán J, Daranas AH, Carrillo R. Dynamic Nucleophilic Aromatic Substitution of Tetrazines. Angew Chem Int Ed Engl 2021; 60:18783-18791. [PMID: 34085747 PMCID: PMC8457238 DOI: 10.1002/anie.202106230] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 12/13/2022]
Abstract
A dynamic nucleophilic aromatic substitution of tetrazines (SN Tz) is presented herein. It combines all the advantages of dynamic covalent chemistry with the versatility of the tetrazine moiety. Indeed, libraries of compounds or sophisticated molecular structures can be easily obtained, which are susceptible to post-functionalization by inverse electron demand Diels-Alder (IEDDA) reaction, which also locks the exchange. Additionally, the structures obtained can be disassembled upon the application of the right stimulus, either UV irradiation or a suitable chemical reagent. Moreover, SN Tz is compatible with the imine chemistry of anilines. The high potential of this methodology has been proved by building two responsive supramolecular systems: A macrocycle that displays a light-induced release of acetylcholine; and a truncated [4+6] tetrahedral shape-persistent fluorescent cage, which is disassembled by thiols unless it is post-stabilized by IEDDA.
Collapse
Affiliation(s)
- Tanausú Santos
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - David S. Rivero
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - Yaiza Pérez‐Pérez
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - Endika Martín‐Encinas
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químicos (MAT4LL)Departamento de FísicaUniversidad de La Laguna (ULL)38206La LagunaTenerifeSpain
| | - Antonio Hernández Daranas
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - Romen Carrillo
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| |
Collapse
|
15
|
Santos T, Rivero DS, Pérez‐Pérez Y, Martín‐Encinas E, Pasán J, Daranas AH, Carrillo R. Dynamic Nucleophilic Aromatic Substitution of Tetrazines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tanausú Santos
- Functional Molecular Systems Group Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) Avda. Astrofísico Fco. Sánchez 3 38206 La Laguna Spain
| | - David S. Rivero
- Functional Molecular Systems Group Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) Avda. Astrofísico Fco. Sánchez 3 38206 La Laguna Spain
| | - Yaiza Pérez‐Pérez
- Functional Molecular Systems Group Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) Avda. Astrofísico Fco. Sánchez 3 38206 La Laguna Spain
| | - Endika Martín‐Encinas
- Functional Molecular Systems Group Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) Avda. Astrofísico Fco. Sánchez 3 38206 La Laguna Spain
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químicos (MAT4LL) Departamento de Física Universidad de La Laguna (ULL) 38206 La Laguna Tenerife Spain
| | - Antonio Hernández Daranas
- Functional Molecular Systems Group Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) Avda. Astrofísico Fco. Sánchez 3 38206 La Laguna Spain
| | - Romen Carrillo
- Functional Molecular Systems Group Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) Avda. Astrofísico Fco. Sánchez 3 38206 La Laguna Spain
| |
Collapse
|
16
|
Laurent Q, Martinent R, Lim B, Pham AT, Kato T, López-Andarias J, Sakai N, Matile S. Thiol-Mediated Uptake. JACS AU 2021; 1:710-728. [PMID: 34467328 PMCID: PMC8395643 DOI: 10.1021/jacsau.1c00128] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 05/19/2023]
Abstract
This Perspective focuses on thiol-mediated uptake, that is, the entry of substrates into cells enabled by oligochalcogenides or mimics, often disulfides, and inhibited by thiol-reactive agents. A short chronology from the initial observations in 1990 until today is followed by a summary of cell-penetrating poly(disulfide)s (CPDs) and cyclic oligochalcogenides (COCs) as privileged scaffolds in thiol-mediated uptake and inhibitors of thiol-mediated uptake as potential antivirals. In the spirit of a Perspective, the main part brings together topics that possibly could help to explain how thiol-mediated uptake really works. Extreme sulfur chemistry mostly related to COCs and their mimics, cyclic disulfides, thiosulfinates/-onates, diselenolanes, benzopolysulfanes, but also arsenics and Michael acceptors, is viewed in the context of acidity, ring tension, exchange cascades, adaptive networks, exchange affinity columns, molecular walkers, ring-opening polymerizations, and templated polymerizations. Micellar pores (or lipid ion channels) are considered, from cell-penetrating peptides and natural antibiotics to voltage sensors, and a concise gallery of membrane proteins, as possible targets of thiol-mediated uptake, is provided, including CLIC1, a thiol-reactive chloride channel; TMEM16F, a Ca-activated scramblase; EGFR, the epithelial growth factor receptor; and protein-disulfide isomerase, known from HIV entry or the transferrin receptor, a top hit in proteomics and recently identified in the cellular entry of SARS-CoV-2.
Collapse
Affiliation(s)
- Quentin Laurent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Rémi Martinent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Bumhee Lim
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Takehiro Kato
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
17
|
Xie Y, Xu Y, Xu J. pH-responsive pickering foam created from self-aggregate polymer using dynamic covalent bond. J Colloid Interface Sci 2021; 597:383-392. [PMID: 33894546 DOI: 10.1016/j.jcis.2021.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 12/01/2022]
Abstract
HYPOTHESIS Responsive surfactant systems based on dynamic covalent bond exhibit an unsatisfactory foamability and foam stability, despite their documented functionality in emulsions. As such we anticipate that the foaming performance should be improved by introducing Pickering effect, which is possible when the responsiveness of the dynamic covenant bonds controls not only the hydrophobicity of polymers but also their aggregation behavior (to form nanoparticles). EXPERIMENTS Here we created surface active nanoparticles made from self-aggregated polymers consisting of PAH (polyallylamine hydrochloride)-BA (benzaldehyde). The covalent imine bonds between originally hydrophilic PAH and hydrophobic BA are dynamic in that their formation and breakage is a function of solution pH, confirmed by 1H NMR and dynamic interfacial tension measurement. FINDINGS At pH 7.4, a stable foam is achieved in the PAH-BA (amino to aldehyde ratio at 1:0.2) solution; while at pH 2.5, it defoams due to breakage of dynamic bonds corresponding to the measured diminishing surface activity. The reversibility of foaming-defoaming has been demonstrated by alternatively changing pH for multiple cycles, with the foaming performance persistent. The foam stability can be improved by more hydrophobic compounds e.g. at a lower amino to aldehyde ratio or using PAH-cinnamaldehyde (CA). The reversible and responsive foaming demonstrated in a Pickering system provides a new method to create novel foaming systems with properties desirable to many applications.
Collapse
Affiliation(s)
- Yiqian Xie
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, Shandong 250100, PR China.
| | - Yuan Xu
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Jian Xu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, Shandong 250100, PR China.
| |
Collapse
|
18
|
Cheng Y, Pham AT, Kato T, Lim B, Moreau D, López-Andarias J, Zong L, Sakai N, Matile S. Inhibitors of thiol-mediated uptake. Chem Sci 2020; 12:626-631. [PMID: 34163793 PMCID: PMC8179002 DOI: 10.1039/d0sc05447j] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ellman's reagent has caused substantial confusion and concern as a probe for thiol-mediated uptake because it is the only established inhibitor available but works neither efficiently nor reliably. Here we use fluorescent cyclic oligochalcogenides that enter cells by thiol-mediated uptake to systematically screen for more potent inhibitors, including epidithiodiketopiperazines, benzopolysulfanes, disulfide-bridged γ-turned peptides, heteroaromatic sulfones and cyclic thiosulfonates, thiosulfinates and disulfides. With nanomolar activity, the best inhibitors identified are more than 5000 times better than Ellman's reagent. Different activities found with different reporters reveal thiol-mediated uptake as a complex multitarget process. Preliminary results on the inhibition of the cellular uptake of pseudo-lentivectors expressing SARS-CoV-2 spike protein do not exclude potential of efficient inhibitors of thiol-mediated uptake for the development of new antivirals. Thiol-reactive inhibitors for the cellular entry of cyclic oligochalcogenide (COC) transporters and SARS-CoV-2 spike pseudo-lentivirus are reported.![]()
Collapse
Affiliation(s)
- Yangyang Cheng
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Takehiro Kato
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Bumhee Lim
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Dimitri Moreau
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Javier López-Andarias
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Lili Zong
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| |
Collapse
|