1
|
Cortés-Lobo A, Hernández JG. Calcium Carbide (CaC 2) as a C 2-Synthon by Mechanochemistry. Chempluschem 2024; 89:e202400257. [PMID: 38819438 DOI: 10.1002/cplu.202400257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Mechanochemical reactions by ball milling have opened new avenues in chemical synthesis. Particularly, mechanochemistry has facilitated the reaction of insoluble materials to simplify stablished synthetic protocols and develop new ones. One notable application involves the use of calcium carbide (CaC2) as a C2-synthon through mechanochemistry, which has offered a more practical alternative to incorporate C2-units compared to the conventional use of highly flammable gaseous acetylene. For example, by ball milling, the acetylenic anions [C2]2- found in CaC2 have been harnessed for the synthesis of diverse functional carbon materials as well as discrete organic molecules. This Concept aims to contribute to the conceptualization of this innovative approach while highlighting both its advantages and the challenges inherent in the use of CaC2.
Collapse
Affiliation(s)
- Alejandro Cortés-Lobo
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia
| | - José G Hernández
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia
| |
Collapse
|
2
|
Yuan Y, Zhang DH, Li QH, Chen SM, He YP, Zhang J. Combining Ti 4(embonate) 6 anionic cages and π-conjugated coordination cations for highly effective optical limiting. Chem Commun (Camb) 2024. [PMID: 39073077 DOI: 10.1039/d4cc02938k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The integration of anionic Ti4L6 (L = embonate) cages and π-conjugated coordination cations into ordered structures can produce high-performance nonlinear optical (NLO) materials. More specifically, by employing Ti4L6 cages for assembly with mixed N,N-chelated and P,P-chelated type conjugated organic ligands and Ag+ ions, three cage-based structures have been synthesized and structurally characterized. Among them, an ion pair structure with strong π-π accumulation exhibits a significant third-order NLO response, and an excellent optical limiting effect has been experimentally verified. This work provides a promising material for NLO applications.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Dong-Hui Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Shu-Mei Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.
| | - Yan-Ping He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
3
|
Voronin VV, Polynski MV, Ledovskaya MS. 1,2,4-Triazines and Calcium Carbide in the Catalyst-Free Synthesis of 2,3,6-Trisubstituted Pyridines and Their D-, 13 C-, and Doubly D 2 - 13 C 2 -Labeled Analogues. Chem Asian J 2023; 18:e202300781. [PMID: 37843978 DOI: 10.1002/asia.202300781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
A novel synthetic approach to 2,3,6-trisubstituted pyridines, their 4,5-dideuterated derivatives, 4,5-13 C2 - and doubly-labeled D2 -13 C2 -pyridines has been developed using catalyst-free [4+2] cycloaddition of 1,2,4-triazines and in situ generated acetylene or labeled acetylene. Calcium carbide and water or deuterium oxide were used for the in situ generation of acetylene and dideuteroacetylene. Calcium carbide-13 C2 in the mixture with water or deuterium oxide was applied as 13 C2 -acetylene and D2 -13 C2 -acetylene source.
Collapse
Affiliation(s)
- Vladimir V Voronin
- Saint Petersburg State University, Institute of Chemistry, Universitetsky Prospect 26, Saint Petersburg, 198504, Russia
| | - Mikhail V Polynski
- Saint Petersburg State University, Institute of Chemistry, Universitetsky Prospect 26, Saint Petersburg, 198504, Russia
- Current address: National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Maria S Ledovskaya
- Saint Petersburg State University, Institute of Chemistry, Universitetsky Prospect 26, Saint Petersburg, 198504, Russia
| |
Collapse
|
4
|
Xiang G, Li N, Chen GH, Li QH, Chen SM, He YP, Zhang J. Enhancing Third-Order Nonlinear Optical Property by Regulating Interaction between Zr 4(embonate) 6 Cage and N, N-Chelated Transition-Metal Cation. Molecules 2023; 28:molecules28052301. [PMID: 36903547 PMCID: PMC10005618 DOI: 10.3390/molecules28052301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Herein, the combination of anionic Zr4L6 (L = embonate) cages and N, N-chelated transition-metal cations leads to a series of new cage-based architectures, including ion pair structures (PTC-355 and PTC-356), dimer (PTC-357), and 3D frameworks (PTC-358 and PTC-359). Structural analyses show that PTC-358 exhibits a 2-fold interpenetrating framework with a 3,4-connected topology, and PTC-359 shows a 2-fold interpenetrating framework with a 4-connected dia network. Both PTC-358 and PTC-359 can be stable in air and other common solvents at room temperature. The investigations of third-order nonlinear optical (NLO) properties indicate that these materials show different degrees of optical limiting effects. It is surprising that increasing coordination interactions between anion and cation moieties can effectively enhance their third-order NLO properties, which can be attributed to the formation of coordination bonds that facilitate charge transfer. In addition, the phase purity, UV-vis spectra, and photocurrent properties of these materials were also studied. This work provides new ideas for the construction of third-order NLO materials.
Collapse
Affiliation(s)
- Gang Xiang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Na Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Guang-Hui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Shu-Mei Chen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Correspondence: (S.-M.C.); (Y.-P.H.)
| | - Yan-Ping He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Correspondence: (S.-M.C.); (Y.-P.H.)
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
5
|
Qi R, Li Z. Selective monoethynylation of isatins using solid calcium carbide as a surrogate of gaseous acetylene. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2139187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Runze Qi
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, China
| | - Zheng Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Wang Y, Wen F, Li Z. Selective Monoethynylation of 2-Oxoacetamides Using Calcium Carbide as a Concise Solid Alkyne Source. Chem Asian J 2022; 17:e202200698. [PMID: 35972843 DOI: 10.1002/asia.202200698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Indexed: 11/05/2022]
Abstract
An efficient selective monoethynylation of 2-oxoacetamides using calcium carbide as a concise solid alkyne source is described. A series of multifunctional compounds, 2-hydroxybut-3-ynamides, are synthesized by this strategy. The salient features of this protocol are the use of inexpensive and easy-to-handle solid alkyne source as a surrogate of inflammable and explosive gaseous acetylene, transition-metal-free and mild condition, wide scope of substrates, high selectivity, high yield, and simple work-up procedure.
Collapse
Affiliation(s)
- Yue Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Fei Wen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Zheng Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| |
Collapse
|
7
|
Liu H, You X, Wen F, Zhang Z, Li Z. Calcium Carbide as a Surrogate of Acetylene: Copper‐Catalyzed Construction of 3‐Methylene‐2‐arylisoindolin‐1‐ones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haiyan Liu
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Xinjie You
- Cebu Normal University College of Chemistry and Chemical Engineering CHINA
| | - Fei Wen
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Zeshuai Zhang
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Zheng Li
- Northwest Normal University College of Chemistry and Chemical Engineering East Anning Road 967 730070 Lanzhou CHINA
| |
Collapse
|
8
|
Rodygin KS, Lotsman KA, Erokhin KS, Korabelnikova VA, Ananikov VP. Thermal Mapping of Self-Promoted Calcium Carbide Reactions for Performing Energy-Economic Processes. Int J Mol Sci 2022; 23:ijms23052763. [PMID: 35269903 PMCID: PMC8911359 DOI: 10.3390/ijms23052763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The syntheses of various chemical compounds require heating. The intrinsic release of heat in exothermic processes is a valuable heat source that is not effectively used in many reactions. In this work, we assessed the released heat during the hydrolysis of an energy-rich compound, calcium carbide, and explored the possibility of its usage. Temperature profiles of carbide hydrolysis were recorded, and it was found that the heat release depended on the cosolvent and water/solvent ratio. Thus, the release of heat can be controlled and adjusted. To monitor the released heat, a special tube-in-tube reactor was assembled using joining part 3D-printed with nylon. The thermal effect of the reaction was estimated using a thermoimaging IR monitor. It was found that the kinetics of heat release are different when using mixtures of water with different solvents, and the maximum achievable temperature depends on the type of solvent and the amount of water and carbide. The possibility of using the heat released during carbide hydrolysis to initiate a chemical reaction was tested using a hydrothiolation reaction—the nucleophilic addition of thiols to acetylene. In a model experiment, the yield of the desired product with the use of heat from carbide hydrolysis was 89%, compared to 30% in this intrinsic heating, which was neglected.
Collapse
Affiliation(s)
- Konstantin S. Rodygin
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, 198504 Saint Petersburg, Russia; (K.S.R.); (K.A.L.)
| | - Kristina A. Lotsman
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, 198504 Saint Petersburg, Russia; (K.S.R.); (K.A.L.)
| | - Kirill S. Erokhin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia; (K.S.E.); (V.A.K.)
| | - Viktoria A. Korabelnikova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia; (K.S.E.); (V.A.K.)
| | - Valentine P. Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, 198504 Saint Petersburg, Russia; (K.S.R.); (K.A.L.)
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia; (K.S.E.); (V.A.K.)
- Correspondence:
| |
Collapse
|
9
|
Lebedev AN, Rodygin KS, Mironenko RM, Saybulina ER, Ananikov VP. Metal-Catalyzed Chemical Activation of Calcium Carbide: New Way to Hierarchical Metal/Alloy-on-Carbon Catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Chen GH, He YP, Wang Z, Li Q, Ma ZZ, Zhang J. Tunable Third-Order Nonlinear Optical Effect via Modifying Ti4(embonate)6 Cage-Based Ionic Pairs. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00138a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benefiting from the strong inherent π-conjugation properties, the integration of Ti4L6 (L = embonate) cages and various N, N-chelated transition-metal cations into tightly packed structures accurately lead to the high-performance...
Collapse
|
11
|
Zlobin A, Diankin I, Pushkarev S, Golovin A. Probing the Suitability of Different Ca 2+ Parameters for Long Simulations of Diisopropyl Fluorophosphatase. Molecules 2021; 26:5839. [PMID: 34641383 PMCID: PMC8510429 DOI: 10.3390/molecules26195839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Organophosphate hydrolases are promising as potential biotherapeutic agents to treat poisoning with pesticides or nerve gases. However, these enzymes often need to be further engineered in order to become useful in practice. One example of such enhancement is the alteration of enantioselectivity of diisopropyl fluorophosphatase (DFPase). Molecular modeling techniques offer a unique opportunity to address this task rationally by providing a physical description of the substrate-binding process. However, DFPase is a metalloenzyme, and correct modeling of metal cations is a challenging task generally coming with a tradeoff between simulation speed and accuracy. Here, we probe several molecular mechanical parameter combinations for their ability to empower long simulations needed to achieve a quantitative description of substrate binding. We demonstrate that a combination of the Amber19sb force field with the recently developed 12-6 Ca2+ models allows us to both correctly model DFPase and obtain new insights into the DFP binding process.
Collapse
Affiliation(s)
- Alexander Zlobin
- Faculty of Bioengineering, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.D.); (S.P.)
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Igor Diankin
- Faculty of Bioengineering, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.D.); (S.P.)
- Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey Pushkarev
- Faculty of Bioengineering, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.D.); (S.P.)
| | - Andrey Golovin
- Faculty of Bioengineering, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.D.); (S.P.)
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|