1
|
Grayfer T, Yamani K, Jung E, Chesnokov GA, Ferrara I, Hsiao CC, Georgiou A, Michel J, Bailly A, Sieber S, Eberl L, Gademann K. Allylic Carbocyclic Inhibitors Covalently Bind Glycoside Hydrolases. JACS AU 2023; 3:1151-1161. [PMID: 37124289 PMCID: PMC10131216 DOI: 10.1021/jacsau.3c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 05/03/2023]
Abstract
Allylic cyclitols were investigated as covalent inhibitors of glycoside hydrolases by chemical, enzymatic, proteomic, and computational methods. This approach was inspired by the C7 cyclitol natural product streptol glucoside, which features a potential carbohydrate leaving group in the 4-position (carbohydrate numbering). To test this hypothesis, carbocyclic inhibitors with leaving groups in the 4- and 6- positions were prepared. The results of enzyme kinetics analyses demonstrated that dinitrophenyl ethers covalently inhibit α-glucosidases of the GH13 family without reactivation. The labeled enzyme was studied by proteomics, and the active site residue Asp214 was identified as modified. Additionally, computational studies, including enzyme homology modeling and density functional theory (DFT) calculations, further delineate the electronic and structural requirements for activity. This study demonstrates that previously unexplored 4- and 6-positions can be exploited for successful inhibitor design.
Collapse
Affiliation(s)
- Tatyana
D. Grayfer
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Khalil Yamani
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Erik Jung
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Gleb A. Chesnokov
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Isabella Ferrara
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Chien-Chi Hsiao
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Antri Georgiou
- Department
of Plant and Microbial Biology, University
of Zurich, Zollikerstrasse
107, 8008 Zürich, Switzerland
| | - Jeremy Michel
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Aurélien Bailly
- Department
of Plant and Microbial Biology, University
of Zurich, Zollikerstrasse
107, 8008 Zürich, Switzerland
| | - Simon Sieber
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Leo Eberl
- Department
of Plant and Microbial Biology, University
of Zurich, Zollikerstrasse
107, 8008 Zürich, Switzerland
| | - Karl Gademann
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
2
|
Stereoselective synthesis of a 4-⍺-glucoside of valienamine and its X-ray structure in complex with Streptomyces coelicolor GlgE1-V279S. Sci Rep 2021; 11:13413. [PMID: 34183716 PMCID: PMC8238978 DOI: 10.1038/s41598-021-92554-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Glycoside hydrolases (GH) are a large family of hydrolytic enzymes found in all domains of life. As such, they control a plethora of normal and pathogenic biological functions. Thus, understanding selective inhibition of GH enzymes at the atomic level can lead to the identification of new classes of therapeutics. In these studies, we identified a 4-⍺-glucoside of valienamine (8) as an inhibitor of Streptomyces coelicolor (Sco) GlgE1-V279S which belongs to the GH13 Carbohydrate Active EnZyme family. The results obtained from the dose-response experiments show that 8 at a concentration of 1000 µM reduced the enzyme activity of Sco GlgE1-V279S by 65%. The synthetic route to 8 and a closely related 4-⍺-glucoside of validamine (7) was achieved starting from readily available D-maltose. A key step in the synthesis was a chelation-controlled addition of vinylmagnesium bromide to a maltose-derived enone intermediate. X-ray structures of both 7 and 8 in complex with Sco GlgE1-V279S were solved to resolutions of 1.75 and 1.83 Å, respectively. Structural analysis revealed the valienamine derivative 8 binds the enzyme in an E2 conformation for the cyclohexene fragment. Also, the cyclohexene fragment shows a new hydrogen-bonding contact from the pseudo-diaxial C(3)-OH to the catalytic nucleophile Asp 394 at the enzyme active site. Asp 394, in fact, forms a bidentate interaction with both the C(3)-OH and C(7)-OH of the inhibitor. In contrast, compound 7 disrupts the catalytic sidechain interaction network of Sco GlgE1-V279S via steric interactions resulting in a conformation change in Asp 394. These findings will have implications for the design other aminocarbasugar-based GH13-inhibitors and will be useful for identifying more potent and selective inhibitors.
Collapse
|