1
|
Xu L, Fan X, He Y, Xia X, Zhang J. Design, Synthesis, and Biological Evaluation of Lysine-Stapled Peptide Inhibitors of p53-MDM2/MDMX Interactions with Potent Antitumor Activity In Vivo. J Med Chem 2024; 67:17893-17904. [PMID: 39300610 DOI: 10.1021/acs.jmedchem.4c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
We introduce novel lysine-stapled peptide inhibitors targeting p53-MDM2/MDMX interactions. Leveraging the model peptides pDI (LTFEHYWAQLTS) and PMI-M3 (LTFLEYWAQLMQ) as starting points, a series of lysine-stapled analogues were designed and synthesized. Through in vitro cell assay screening, two lead compounds, SPDI-48-T1 and SPMI-48-T3, were identified for their excellent antiproliferation activity. Fluorescence polarization assays revealed that both compounds exhibited strong binding affinities against MDM2 and MDMX, ascertained by Kd values within the low micromolar spectrum. Further characterization of SPDI-48-T1 and SPMI-48-T3 demonstrated that SPDI-48-T1 possessed superior cell permeability and serum stability. Notably, SPDI-48-T1 displayed a dose-dependent suppression of tumor growth in an HCT116 xenograft mouse model. Our findings indicate that SPDI-48-T1 holds promise as a lead compound for further development as an anticancer agent by modulating p53-MDM2/MDMX interactions. Additionally, this study also proved that the lysine stapling strategy may serve as a robust approach for generating peptide ligands targeting other protein-protein interactions.
Collapse
Affiliation(s)
- Lei Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xin Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yi He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xuefeng Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Jinqiang Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
- Chongqing University Industrial Technology Research Institute, Chongqing 401329, People's Republic of China
| |
Collapse
|
2
|
Liu YQ, Liang CQ, Chen ZW, Hu J, Hu JJ, Luo YY, Chen YX, Li YM. 14-3-3ζ Participates in the Phase Separation of Phosphorylated and Glycated Tau and Modulates the Physiological and Pathological Functions of Tau. ACS Chem Neurosci 2023; 14:1220-1225. [PMID: 36939323 DOI: 10.1021/acschemneuro.3c00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Tau plays a major role in Alzheimer's disease (AD) and several other neurodegenerative diseases. Tau undergoing liquid-liquid phase separation (LLPS) performs specific physiological functions, induces pathological processes, and contributes to neurodegeneration. Regulating Tau phase separation helps maintain physiological functions of Tau and inhibits pathological aggregation. Here, we show that the 14-3-3 zeta isoform (14-3-3ζ) participates in Tau LLPS. 14-3-3ζ can undergo co-phase separation with WT Tau, participate in and stabilize Tau droplets, and inhibit Tau droplet-driven tubulin assembly. On the other hand, 14-3-3ζ disrupts the LLPS of phosphorylated and glycated Tau, thereby inhibiting the amyloid aggregation initiated by LLPS.
Collapse
Affiliation(s)
- Yu-Qing Liu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Chu-Qiao Liang
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi-Wei Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jun Hu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jin-Jian Hu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yun-Yi Luo
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yong-Xiang Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,Beijing Institute for Brain Disorders, Beijing 100069, P. R. China.,Center for Synthetic and System Biology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
3
|
Abstract
The 14-3-3 family proteins are vital scaffold proteins that ubiquitously expressed in various tissues. They interact with numerous protein targets and mediate many cellular signaling pathways. The 14-3-3 binding motifs are often embedded in intrinsically disordered regions which are closely associated with liquid-liquid phase separation (LLPS). In the past ten years, LLPS has been observed for a variety of proteins and biological processes, indicating that LLPS plays a fundamental role in the formation of membraneless organelles and cellular condensates. While extensive investigations have been performed on 14-3-3 proteins, its involvement in LLPS is overlooked. To date, 14-3-3 proteins have not been reported to undergo LLPS alone or regulate LLPS of their binding partners. To reveal the potential involvement of 14-3-3 proteins in LLPS, in this review, we summarized the LLPS propensity of 14-3-3 binding partners and found that about one half of them may undergo LLPS spontaneously. We further analyzed the phase separation behavior of representative 14-3-3 binders and discussed how 14-3-3 proteins may be involved. By modulating the conformation and valence of interactions and recruiting other molecules, we speculate that 14-3-3 proteins can efficiently regulate the functions of their targets in the context of LLPS. Considering the critical roles of 14-3-3 proteins, there is an urgent need for investigating the involvement of 14-3-3 proteins in the phase separation process of their targets and the underling mechanisms.
Collapse
|