1
|
Shen Z, Jiang W, Zheng S, Luo S, Guo Z, Wang Q, Wang Y, Hu J. Intracellular Co-Delivery of Carbon Monoxide and Nitric Oxide Induces Mitochondrial Apoptosis for Cancer Therapy. Angew Chem Int Ed Engl 2025; 64:e202419939. [PMID: 39781751 DOI: 10.1002/anie.202419939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Understanding the interplay between gasotransmitters is essential for unlocking their therapeutic potential. However, achieving spatiotemporally controlled co-delivery to target cells remains a significant challenge. Herein, we propose an innovative strategy for the intracellular co-delivery of carbon monoxide (CO) and nitric oxide (NO) gasotransmitters under clinically relevant wavelengths. This approach rationally couples aerobic photooxidative and anaerobic photocatalytic reactions within a polymeric micelle platform, using palladium(II) tetraphenyltetrabenzoporphyrin (PdTPTBP) as both photosensitizer and photocatalyst. Notably, the photooxidation-mediated release of CO generates a local hypoxic microenvironment, which facilitates the photoredox catalyzed release of NO. This self-adaptive micelle platform enables efficient uptake by tumor cells and intracellular co-delivery of CO and NO under 630 nm light irradiation, demonstrating potent anti-tumor activity in a 4T1 tumor-bearing mouse model via the synergistic induction of mitochondrial apoptosis.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Wei Jiang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shaoqiu Zheng
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Siyuan Luo
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Zixuan Guo
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Qin Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| |
Collapse
|
2
|
Laneri F, Parisi C, Natile MM, Sortino S. Electronic interaction-enhanced NO photorelease and photothermal conversion in N-doped carbon dot nanoconjugates. J Mater Chem B 2024; 12:11817-11825. [PMID: 39435589 DOI: 10.1039/d4tb01264j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A nitric oxide (NO) photodonor (1) capable of releasing two NO molecules through a stepwise mechanism has been covalently grafted to blue-emitting N-doped carbon dots (NCDs). The resulting water-soluble nanoconjugate (NCDs-1), ca. 10 nm in diameter, exhibits a new absorption band not present in the simple physical mixture of the two components and is attributable to strong electronic interactions between them in the ground state. Blue light excitation of NCDs-1 leads to NO photogeneration with an efficiency almost one order of magnitude higher than that observed for 1 alone, probably due to a photoinduced electron transfer between the NCDs and the grafted 1. Photoexcitation of the nanoconjugate also results in effective photothermal conversion, which is negligible in the naked NCDs. Furthermore, in contrast to 1, the nanoconjugate liberates NO also under excitation with green light. Finally, the typical blue fluorescence of the NCDs is quenched in NCDs-1 but restored upon the photouncaging of the second NO molecule, providing readable and real-time information about the amount of NO photogenerated.
Collapse
Affiliation(s)
- Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, Catania, I-95125, Italy.
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, Catania, I-95125, Italy.
| | - Marta Maria Natile
- ICMATE-CNR Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council, Department of Chemical Science, University of Padova, 35131 Padova, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, Catania, I-95125, Italy.
| |
Collapse
|
3
|
Hou X, Xue Y, Liu C, Li Z, Xu Z. Dual NIR-channel fluorescent probe for detecting ONOO - in vitro and vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124665. [PMID: 38897059 DOI: 10.1016/j.saa.2024.124665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/26/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
As one of endogenous reactive oxygen species (ROS), peroxynitrite (ONOO-) performs various functions in both pathological and physiological mechanisms. In this work, an optical and near-infrared (NIR) fluorescent probe (NX), which based on 3-dihydro-1H-xanthene and 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) group was designed and prepared to detect ONOO-. This probe revealed an obvious optical and a fluorescent response when ONOO- was present and it exhibited higher selectivity over other ROS. Especially, the dual NIR fluorescence changes at 660 and 800 nm allowed quantitative detection of ONOO- in the range of 15-40 μM, and the detection limit was 82 nM. Finally, the probe was effectively employed to visualize exogenous and endogenous ONOO- in HepG2 cells and zebrafish, respectively. All the results indicated the dual NIR-channel probe could serve as a potent detecting tools in studying ONOO- in vitro and in vivo.
Collapse
Affiliation(s)
- Xufeng Hou
- Key Laboratory of Chemo/Biosensing and Detection, Xuchang University, Xuchang 461000, PR China; College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China
| | - Yilin Xue
- Key Laboratory of Chemo/Biosensing and Detection, Xuchang University, Xuchang 461000, PR China; College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China
| | - Chunhui Liu
- Key Laboratory of Chemo/Biosensing and Detection, Xuchang University, Xuchang 461000, PR China; College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China
| | - Zhensheng Li
- Key Laboratory of Chemo/Biosensing and Detection, Xuchang University, Xuchang 461000, PR China; College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China.
| | - Zhihong Xu
- Key Laboratory of Chemo/Biosensing and Detection, Xuchang University, Xuchang 461000, PR China; College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China; College of Chemistry, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
4
|
Hou XF, Xue YL, Yang JG, Li ZS, Xu ZH, Li W, Yuan L. A Cascade Activation Probe with Double-Enhanced Near-Infrared Imaging for Monitoring Peroxynitrite Fluctuations in Vivo. Anal Chem 2024; 96:17657-17664. [PMID: 39440850 DOI: 10.1021/acs.analchem.4c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Monitoring peroxynitrite (ONOO-) fluctuations is particularly important for assessing pathological progression and oxidative damage due to their crucial role in maintaining the redox balance of organisms. However, due to the lack of efficient tools for differentially monitoring ONOO- fluctuations at different concentration ranges in vivo, the precise detection of endogenous ONOO- fluctuations under pathological conditions in living systems remains challenging. Herein, we rationally designed a double-enhanced emission cascade activatable near-infrared (NIR) fluorescent probe (B-TCF) for the measurement of ONOO-, which consists of a borate ester response group and a malononitrile hemicyanine fluorophore. Especially, after sequential oxidative hydrolysis of the borate ester group and xanthene skeleton, B-TCF exhibited a sequentially double-enhanced NIR emission response at 776 and 625 nm for different ONOO- concentration ranges. Moreover, B-TCF revealed excellent and promising performance for ONOO- in terms of high selectivity, sensitivity, and reaction rate (k = 28.2 M-1 s-1). Motivated by the two-step emission signal enhancement and large wavelength shift in the NIR region, B-TCF enabled discriminative imaging of ONOO- with the low and high concentrations in living cells. Importantly, B-TCF was successfully applied for assessing the pathological progression of isoniazid and acetaminophen-induced liver damage in vivo by detecting the endogenous different ONOO- levels. Overall, this study not only demonstrates the first double-enhanced emission cascade activatable NIR fluorescent probe for measuring the dynamic variation of ONOO- in related diseases but also shows great potential as an effective molecular tool for evaluating the various stages of drug-induced liver damage.
Collapse
Affiliation(s)
- Xu-Feng Hou
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yi-Lin Xue
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China
| | - Jin-Gang Yang
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China
| | - Zhen-Sheng Li
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China
| | - Zhi-Hong Xu
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
5
|
Parisi C, Laneri F, Fraix A, Sortino S. Multifunctional Molecular Hybrids Photoreleasing Nitric Oxide: Advantages, Pitfalls, and Opportunities. J Med Chem 2024; 67:16932-16950. [PMID: 39009572 DOI: 10.1021/acs.jmedchem.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The multifaceted role nitric oxide (NO) plays in human physiology and pathophysiology has opened new scenarios in biomedicine by exploiting this free radical as an unconventional therapeutic against important diseases. The difficulties in handling gaseous NO and the strict dependence of the biological effects on its doses and location have made the light-activated NO precursors, namely NO photodonors (NOPDs), very appealing by virtue of their precise spatiotemporal control of NO delivery. The covalent integration of NOPDs and additional functional components within the same molecular skeleton through suitable linkers can lead to an intriguing class of multifunctional photoactivatable molecular hybrids. In this Perspective, we provide an overview of the recent advances in these molecular constructs, emphasizing those merging NO photorelease with targeting, fluorescent reporting, and phototherapeutic functionalities. We will highlight the rational design behind synthesizing these molecular hybrids and critically describe the advantages, drawbacks, and opportunities they offer in biomedical research.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
6
|
Mondal A, Paul S, De P. Recent Advancements in Polymeric N-Nitrosamine-Based Nitric Oxide (NO) Donors and their Therapeutic Applications. Biomacromolecules 2024; 25:5592-5608. [PMID: 39116284 DOI: 10.1021/acs.biomac.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Nitric oxide (NO), a gasotransmitter, is known for its wide range of effects in vasodilation, cardiac relaxation, and angiogenesis. This diatomic free radical also plays a pivotal role in reducing the risk of platelet aggregation and thrombosis. Furthermore, NO demonstrates promising potential in cancer therapy as well as in antibacterial and antibiofilm activities at higher concentrations. To leverage their biomedical activities, numerous NO donors have been developed. Among these, N-nitrosamines are emerging as a notable class, capable of releasing NO under suitable photoirradiation and finding a broad range of therapeutic applications. This review discusses the design, synthesis, and biological applications of polymeric N-nitrosamines, highlighting their advantages over small molecular NO donors in terms of stability, NO payload, and target-specific delivery. Additionally, various small-molecule N-nitrosamines are explored to provide a comprehensive overview of this burgeoning field. We anticipate that this review will aid in developing next-generation polymeric N-nitrosamines with improved physicochemical properties.
Collapse
Affiliation(s)
- Anushree Mondal
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Soumya Paul
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
7
|
Basile S, Parisi C, Bellia F, Zimbone S, Arrabito G, Gulli D, Pignataro B, Giuffrida ML, Sortino S, Copani A. Red-Light-Photosensitized Tyrosine 10 Nitration of β-Amyloid 1-42 Diverts the Protein from Forming Toxic Aggregates. ACS Chem Neurosci 2024; 15:2916-2924. [PMID: 39036818 DOI: 10.1021/acschemneuro.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Several studies have highlighted the presence of nitration damage following neuroinflammation in Alzheimer's disease (AD). Accordingly, post-transcriptional modifications of β-amyloid (Aβ), including peptide nitration, have been explored as a marker of the disease. However, the implications of Aβ nitration in terms of aggregation propensity and neurotoxicity are still debated. Here, we show new data obtained using a photoactivatable peroxynitrite generator (BPT-NO) to overcome the limitations associated with chemical nitration methods. We found that the photoactivation of BPT-NO with the highly biocompatible red light selectively induces the nitration of tyrosine 10 of freshly solubilized full-length Aβ1-42. Photonitrated Aβ1-42 was, therefore, investigated for aggregation states and functions. It resulted that photonitrated Aβ1-42 did not aggregate into small oligomers but rather self-assembled into large amorphous aggregates. When tested on neuronal-like SH-SY5Y cells and microglial C57BL/6 BV2 cells, photonitrated Aβ1-42 showed to be free of neurotoxicity and able to induce phagocytic microglia cells. We propose that light-controlled nitration of the multiple forms in which Aβ occurs (i.e., monomers, oligomers, fibrils) could be a tool to assess in real-time the impact of tyrosine nitration on the amyloidogenic and toxic properties of Aβ1-42.
Collapse
Affiliation(s)
- Sarah Basile
- Department of Drug and Health Sciences (DSFS), University of Catania, 95125 Catania, Italy
| | - Cristina Parisi
- Department of Drug and Health Sciences (DSFS), University of Catania, 95125 Catania, Italy
| | - Francesco Bellia
- Institute of Crystallography (IC), National Research Council, 95126 Catania, Italy
| | - Stefania Zimbone
- Institute of Crystallography (IC), National Research Council, 95126 Catania, Italy
| | - Giuseppe Arrabito
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, 90128 Palermo, Italy
- ATeN Center, University of Palermo, 90128 Palermo, Italy
| | - Daniele Gulli
- ATeN Center, University of Palermo, 90128 Palermo, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, 90128 Palermo, Italy
- ATeN Center, University of Palermo, 90128 Palermo, Italy
| | | | - Salvatore Sortino
- Department of Drug and Health Sciences (DSFS), University of Catania, 95125 Catania, Italy
| | - Agata Copani
- Department of Drug and Health Sciences (DSFS), University of Catania, 95125 Catania, Italy
- Institute of Crystallography (IC), National Research Council, 95126 Catania, Italy
| |
Collapse
|
8
|
Laneri F, Parisi C, Seggio M, Fraix A, Longobardi G, Catanzano O, Quaglia F, Sortino S. Supramolecular red-light-photosensitized nitric oxide release with fluorescence self-reporting within biocompatible nanocarriers. J Mater Chem B 2024; 12:6500-6508. [PMID: 38873736 DOI: 10.1039/d4tb00325j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The strict dependence of the biological effects of nitric oxide (NO) on its concentration and generation site requires this inorganic free radical to be delivered with precise spatiotemporal control. Light-activation by suitable NO photoprecursors represents an ideal approach. Developing strategies to activate NO release using long-wavelength excitation light in the therapeutic window (650-1300 nm) is challenging. In this contribution, we demonstrate that NO release by a blue-light activatable NO photodonor (NOPD) with self-fluorescence reporting can be triggered catalytically by the much more biocompatible red light exploiting a supramolecular photosensitization process. Different red-light absorbing photosensitizers (PSs) are co-entrapped with the NOPD within different biocompatible nanocarriers such as Pluronic® micelles, microemulsions and branched cyclodextrin polymers. The intra-carrier photosensitized NO release, involving the lowest, long-lived triplet state of the PS as the key intermediate and its quenching by the NOPD, is competitive with that by molecular oxygen. This allows NO to be released with good efficacy, even under aerobic conditions. Therefore, the adopted general strategy provides a valuable tool for generating NO from an already available NOPD, otherwise activatable with the poorly biocompatible blue light, without requiring any chemical modification and using sophisticated and expensive irradiation sources.
Collapse
Affiliation(s)
- Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Mimimorena Seggio
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Giuseppe Longobardi
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - Ovidio Catanzano
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, I-80078, Pozzuoli (NA), Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
9
|
Yin L, Zhao B, Zhou J, Huang Y, Ma H, Zhou T, Mou J, Min P, Chen J, Ge G, Qian X, Luo X, Yang Y. A Carbon-Caged Rhodamine Generating Nitrosoperoxycarbonate for Photoimmunotherapy. Angew Chem Int Ed Engl 2024; 63:e202402949. [PMID: 38644342 DOI: 10.1002/anie.202402949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Photoimmunotherapy is a promising cancer treatment modality. While potent 1-e- oxidative species are known to induce immunogenic cell death (ICD), they are also associated with unspecific oxidation and collateral tissue damage. This difficulty may be addressed by post-generation radical reinforcement. Namely, non-oxidative radicals are first generated and subsequently activated into powerful oxidative radicals to induce ICD. Here, we developed a photo-triggered molecular donor (NPCD565) of nitrosoperoxycarbonate (ONOOCO2 -), the first of its class to our knowledge, and further evaluated its feasibility for immunotherapy. Upon irradiation of NPCD565 by light within a broad spectral region from ultraviolet to red, ONOOCO2 - is released along with a bright rhodamine dye (RD565), whose fluorescence is a reliable and convenient build-in reporter for the localization, kinetics, and dose of ONOOCO2 - generation. Upon photolysis of NPCD565 in 4T1 cells, damage-associated molecular patterns (DAMPs) indicative of ICD were observed and confirmed to exhibit immunogenicity by induced maturation of dendritic cells. In vivo studies with a bilateral tumor-bearing mouse model showcased the potent tumor-killing capability of NPCD565 of the primary tumors and growth suppression of the distant tumors. This work unveils the potent immunogenicity of ONOOCO2 -, and its donor (NPCD565) has broad potential for photo-immunotherapy of cancer.
Collapse
Affiliation(s)
- Lei Yin
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Bei Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Yunxia Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ting Zhou
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jie Mou
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Peiru Min
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
10
|
Parisi C, Pastore A, Stornaiuolo M, Sortino S. A fluorescent probe with an ultra-rapid response to nitric oxide. J Mater Chem B 2024; 12:5076-5084. [PMID: 38567488 DOI: 10.1039/d4tb00064a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Nitric oxide (NO) is a diatomic inorganic free radical ubiquitous in mammalian tissues and cells that plays a multifaceted role in a variety of physiological and pathophysiological processes. The strict dependence of the biological effects of NO on its concentration makes its real-time monitoring crucial. In view of the reactivity of NO with multiple bio-targets, the development of NO sensors that associate a fast response rate with selectivity and sensitivity is very challenging. Herein we report a fluorescent NO probe based on a BODIPY fluorogenic unit covalently linked to a trimethoxy aniline derivative through a flexible spacer. NO leads to effective nitrosation of the highly electron-rich amino active site of the probe through the secondary oxide N2O3, resulting in an increase of BODIPY fluorescence quantum yield from Φf = 0.06 to Φf = 0.55, accompanied by significant changes in the relative amplitude of the fluorescence lifetimes. In situ generation of NO, achieved by a tailored light-activatable NO releaser, allows the real-time detection of NO as a function of its concentration and permits demonstrating that the probe exhibits a very fast response time, being ≤0.1 s. This remarkable data combines with the high sensitivity of the probe to NO (LOD = 35 nM), responsiveness also to ONOO-, the other important secondary oxide of NO, independence from the fluorescence response within a wide pH range, good selectivity towards different analytes and small interference by typical physiological concentrations of glutathione. Validation of this probe in melanoma cell lines is also reported.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125, Italy.
| | - Arianna Pastore
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125, Italy.
| |
Collapse
|
11
|
Fraix A, Parisi C, Longobardi G, Conte C, Pastore A, Stornaiuolo M, Graziano ACE, Alberto ME, Francés-Monerris A, Quaglia F, Sortino S. Red-Light-Photosensitized NO Release and Its Monitoring in Cancer Cells with Biodegradable Polymeric Nanoparticles. Biomacromolecules 2023; 24:3887-3897. [PMID: 37467426 DOI: 10.1021/acs.biomac.3c00527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The role of nitric oxide (NO) as an "unconventional" therapeutic and the strict dependence of biological effects on its concentration require the generation of NO with precise spatiotemporal control. The development of precursors and strategies to activate NO release by excitation in the so-called "therapeutic window" with highly biocompatible and tissue-penetrating red light is desirable and challenging. Herein, we demonstrate that one-photon red-light excitation of Verteporfin, a clinically approved photosensitizer (PS) for photodynamic therapy, activates NO release, in a catalytic fashion, from an otherwise blue-light activatable NO photodonor (NOPD) with an improvement of about 300 nm toward longer and more biocompatible wavelengths. Steady-state and time-resolved spectroscopic and photochemical studies combined with theoretical calculations account for an NO photorelease photosensitized by the lowest triplet state of the PS. In view of biological applications, the water-insoluble PS and NOPD have been co-entrapped within water-dispersible, biodegradable polymeric nanoparticles (NPs) of mPEG-b-PCL (about 84 nm in diameter), where the red-light activation of NO release takes place even more effectively than in an organic solvent solution and almost independently by the presence of oxygen. Moreover, the ideal spectroscopic prerequisites and the restricted environment of the NPs permit the green-fluorescent co-product formed concomitantly to NO photorelease to communicate with the PS via Förster resonance energy transfer. This leads to an enhancement of the typical red emission of the PS offering the possibility of a double color optical reporter useful for the real-time monitoring of the NO release through fluorescence techniques. The suitability of this strategy applied to the polymeric NPs as potential nanotherapeutics was evaluated through biological tests performed by using HepG2 hepatocarcinoma and A375 melanoma cancer cell lines. Fluorescence investigation in cells and cell viability experiments demonstrates the occurrence of the NO release under one-photon red-light illumination also in the biological environment. This confirms that the adopted strategy provides a valuable tool for generating NO from an already available NOPD, otherwise activatable with the poorly biocompatible blue light, without requiring any chemical modification and the use of sophisticated irradiation sources.
Collapse
Affiliation(s)
- Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Giuseppe Longobardi
- Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Arianna Pastore
- Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Adriana C E Graziano
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Marta E Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende I-87036, Italy
| | | | - Fabiana Quaglia
- Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
12
|
Lei P, Li M, Dong C, Shuang S. Multifunctional Mitochondria-Targeting Near-Infrared Fluorescent Probe for Viscosity, ONOO -, Mitophagy, and Bioimaging. ACS Biomater Sci Eng 2023; 9:3581-3589. [PMID: 37252846 DOI: 10.1021/acsbiomaterials.3c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Irregularities in mitochondrial viscosity and peroxynitrite (ONOO-) concentration can lead to mitochondrial dysfunction. It is still a great challenge to develop near-infrared (NIR) fluorescent probes to simultaneously detect viscosity, endogenous ONOO-, and mitophagy. Herein, a multifunctional mitochondria-targeting NIR fluorescent probe P-1 was first synthesized for simultaneously detecting viscosity, ONOO-, and mitophagy. P-1 used quinoline cations as a mitochondrial targeting moiety, arylboronate as an ONOO- responsive group, and detected the change of viscosity by the twisted internal charge transfer (TICT) mechanism. The probe has an excellent response to the viscosity during inflammation by lipopolysaccharides (LPSs) and mitophagy induced by starvation at 670 nm. The viscosity changes of the probe induced by nystatin in zebrafish showed that P-1 was able to detect microviscosity in vivo. P-1 also showed good sensitivity with a detection limit of 6.2 nM for ONOO- detection and was successfully applied to the endogenous ONOO- detection in zebrafish. Moreover, P-1 has the ability to distinguish between cancer cells and normal cells. All of these features make P-1 a promising candidate to detect mitophagy and ONOO- -associated physiological and pathological processes.
Collapse
Affiliation(s)
- Peng Lei
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Minglu Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
13
|
Wang Z, Jin A, Yang Z, Huang W. Advanced Nitric Oxide Generating Nanomedicine for Therapeutic Applications. ACS NANO 2023; 17:8935-8965. [PMID: 37126728 PMCID: PMC10395262 DOI: 10.1021/acsnano.3c02303] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO), a gaseous transmitter extensively present in the human body, regulates vascular relaxation, immune response, inflammation, neurotransmission, and other crucial functions. Nitrite donors have been used clinically to treat angina, heart failure, pulmonary hypertension, and erectile dysfunction. Based on NO's vast biological functions, it further can treat tumors, bacteria/biofilms and other infections, wound healing, eye diseases, and osteoporosis. However, delivering NO is challenging due to uncontrolled blood circulation release and a half-life of under five seconds. With advanced biotechnology and the development of nanomedicine, NO donors packaged with multifunctional nanocarriers by physically embedding or chemically conjugating have been reported to show improved therapeutic efficacy and reduced side effects. Herein, we review and discuss recent applications of NO nanomedicines, their therapeutic mechanisms, and the challenges of NO nanomedicines for future scientific studies and clinical applications. As NO enables the inhibition of the replication of DNA and RNA in infectious microbes, including COVID-19 coronaviruses and malaria parasites, we highlight the potential of NO nanomedicines for antipandemic efforts. This review aims to provide deep insights and practical hints into design strategies and applications of NO nanomedicines.
Collapse
Affiliation(s)
- Zhixiong Wang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Albert Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| |
Collapse
|
14
|
Jiang D, Pan L, Yang X, Ji Z, Zheng C, Meng Z, Liang B, Zhang W, Chen J, Shi C. Photo-controllable burst generation of peroxynitrite based on synergistic interactions of polymeric nitric oxide donors and IR780 for enhancing broad-spectrum antibacterial therapy. Acta Biomater 2023; 159:259-274. [PMID: 36690050 DOI: 10.1016/j.actbio.2023.01.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
The newly attractive peroxynitrite (ONOO-) therapy can prominently enhance antibacterial therapeutic efficacy. However, it is a great challenge but urgently needed to generate ONOO- with adjustable release rate and dosage in order to satisfy personalized treatments for different disease types and severities. Herein, PSNO@IR780 nanoparticles are fabricated via co-assembly of an amphiphilic PEG-b-PAASNO block copolymer grafted with abundant nitric oxide (NO) donor units and IR780 as a photothermal and photodynamic agent. Photo-controllable burst generation of ONOO- from PSNO@IR780 nanoparticles could be realized based on synergistic reactions of rapid NO release induced by increased local temperature and efficiently produced superoxide anion radical (O2•-) from IR780. The maximum ONOO- release dosage is up to 6.73 ± 0.07 µM and release rate is up to 98.1 ± 1.38 nM/s. Furthermore, the ONOO- release behavior can be precisely manipulated by varying sample concentrations, irradiated durations, output power densities, and laser switches, respectively. Ultra-efficiently generated ONOO- from biocompatible PSNO@IR780 nanoparticles significantly elevated broad spectrum antibacterial efficiency through damaging bacterial membranes. Thus, PSNO@IR780 nanoparticles may present a new insight into preparation of burst and controllable generating ONOO- materials, and provide new opportunities for antibacterial therapy. STATEMENT OF SIGNIFICANCE: 1. Polymeric NO donor (PEG-b-PAASNO) grafted with abundant NO donor units was synthesized. 2. PSNO@IR780 nanoparticles were prepared by co-assembly of IR780 and amphiphilic PEG-b-PAASNOpolymer. 3. The maximum ONOO- release dosage from PSNO@IR780 nanoparticles was 6.73 ± 0.08 µM. 4. The fastest ONOO- release rate from PSNO@IR780 nanoparticles was 98.1 ± 1.4 nM/s. 5. Ultra-efficiently generated ONOO- significantly elevated antibacterial efficiency via damaging bac-terial membranes.
Collapse
Affiliation(s)
- Dawei Jiang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Joint Center of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Luqi Pan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Joint Center of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xiao Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Joint Center of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Zhixiao Ji
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Joint Center of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Cheng Zheng
- Department of Critical Care Medicine, Taizhou Municipal Hospital, Taizhou, Zhejiang 318000, China
| | - Zhizhen Meng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Joint Center of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bin Liang
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200030, China.
| | - Jinfei Chen
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Changcan Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Joint Center of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
15
|
Tao S, Shen Z, Chen J, Shan Z, Huang B, Zhang X, Zheng L, Liu J, You T, Zhao F, Hu J. Red Light-Mediated Photoredox Catalysis Triggers Nitric Oxide Release for Treatment of Cutibacterium Acne Induced Intervertebral Disc Degeneration. ACS NANO 2022; 16:20376-20388. [PMID: 36469724 DOI: 10.1021/acsnano.2c06328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intervertebral disc degeneration (IVDD) has been known as a highly prevalent and disabling disease, which is one of the main causes of low back pain and disability. Unfortunately, there is no effective cure to treat this formidable disease, and surgical interventions are typically applied. Herein, we report that the local administration of nitric oxide (NO)-releasing micellar nanoparticles can efficiently treat IVDD associated with Modic changes in a rat model established by infection with Cutibacterium acnes (C. acnes). By covalent incorporation of palladium(II) meso-tetraphenyltetrabenzoporphyrin photocatalyst and coumarin-based NO donors into the core of micellar nanoparticles, we demonstrate that the activation of the UV-absorbing coumarin-based NO donors can be achieved under red light irradiation via photoredox catalysis, although it remains a great challenge to implement photoredox catalysis reactions in biological conditions due to the complex microenvironments. Notably, the local delivery of NO can not only efficiently eradicate C. acnes pathogens but also inhibit the inflammatory response and osteoclast differentiation in the intervertebral disc tissues, exerting antibacterial, anti-inflammatory, and antiosteoclastogenesis effects. This work provides a feasible means to efficiently treat IVDD by the local administration of NO signaling molecules without resorting to a surgical approach.
Collapse
Affiliation(s)
- Siyue Tao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Zhiqiang Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, Anhui, China
| | - Jian Chen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Zhi Shan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Bao Huang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Xuyang Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Lin Zheng
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Junhui Liu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Tao You
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei230001, AnhuiChina
| | - Fengdong Zhao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, Anhui, China
| |
Collapse
|
16
|
Chen Z, Zheng S, Shen Z, Cheng J, Xiao S, Zhang G, Liu S, Hu J. Oxygen-Tolerant Photoredox Catalysis Triggers Nitric Oxide Release for Antibacterial Applications. Angew Chem Int Ed Engl 2022; 61:e202204526. [PMID: 35579256 DOI: 10.1002/anie.202204526] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 12/30/2022]
Abstract
Photoredox catalysis has emerged as a robust tool for chemical synthesis. However, it remains challenging to implement photoredox catalysis under physiological conditions due to the complex microenvironment and the quenching of photocatalyst by biologically relevant molecules such as oxygen. Here, we report that UV-absorbing N,N'-dinitroso-1,4-phenylenediamine derivatives can be selectively activated by fac-Ir(ppy)3 photocatalyst within micellar nanoparticles under visible light irradiation (e.g., 500 nm) through photoredox catalysis in aerated aqueous solutions to form quinonediimine (QDI) residues with concomitant release of NO. Notably, the formation of QDI derivatives can actively scavenge the reactive oxygen species generated by fac-Ir(ppy)3 , thus avoiding oxygen quenching of the photocatalyst. Further, we exemplify that the oxygen-tolerant photoredox catalysis-mediated NO release can not only kill planktonic bacteria in vitro but also efficiently treat MRSA infections in vivo.
Collapse
Affiliation(s)
- Zhenhua Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shaoqiu Zheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiqiang Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian Cheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyan Xiao
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
17
|
Chen Z, Zheng S, Shen Z, Cheng J, Xiao S, Zhang G, Liu S, Hu J. Oxygen‐Tolerant Photoredox Catalysis Triggers Nitric Oxide Release for Antibacterial Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhenhua Chen
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Shaoqiu Zheng
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhiqiang Shen
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Jian Cheng
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Shiyan Xiao
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Guoying Zhang
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Shiyong Liu
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Jinming Hu
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
18
|
Li M, Huang Y, Song S, Shuang S, Dong C. Piperazine-Based Mitochondria-Immobilized pH Fluorescent Probe for Imaging Endogenous ONOO – and Real-Time Tracking of Mitophagy. ACS APPLIED BIO MATERIALS 2022; 5:2777-2785. [DOI: 10.1021/acsabm.2c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minglu Li
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Yue Huang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Shengmei Song
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|