1
|
Shradha VTK, Das S, Patra A. Endoplasmic Reticulum-Targeting Delayed Fluorescent Probe for Dual-mode Nitroreductase Sensing. Chem Asian J 2025; 20:e202401226. [PMID: 39670684 DOI: 10.1002/asia.202401226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/14/2024]
Abstract
Organic thermally activated delayed fluorescence (TADF) materials, known for their long-lived emission properties, are highly sought after for background-free imaging of selective analytes in time-resolved modes. However, their practical application faces significant challenges, including the air sensitivity of triplet states, lack of organelle specificity, and the absence of precise analyte recognition centres. These limitations hinder their effectiveness in detecting key cancer biomarkers such as nitroreductase (NTR). Herein, we present the development of donor (triphenylamine)-acceptor (quinoxaline)-based probes, TPQS and TPNS, which are functionalized with a sulphonamide unit to offer endoplasmic reticulum specificity. TPQS exhibits delayed fluorescence, attributed to a minimal singlet-triplet energy gap, as confirmed by time-resolved fluorescence measurements. Additionally, a nonfluorescent probe, TPNS, is synthesized by introducing a nitro group into the sulphonamide unit of the TPQS backbone, serving as a recognition centre for NTR. Upon reacting with NTR, TPNS displays a "turn-on" luminescence and delayed fluorescence, enabling dual-mode detection of NTR through both confocal fluorescence imaging and time-resolved fluorescence imaging (TRFI) in cancer cells. These findings underscore the potential of delayed fluorescent emitters for the sensitive and specific detection of cancer biomarkers in complex biological environments.
Collapse
Affiliation(s)
- V T K Shradha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
2
|
Zhang X, Wang X, Huang W, Yin S, Yan P, Gao T, Zhou Y, Li H. An efficient circularly polarized luminescence probe base on anthryl-modified Eu(III)-helicates for the detection and imaging singlet oxygen in living cells. J Inorg Biochem 2025; 269:112881. [PMID: 40073654 DOI: 10.1016/j.jinorgbio.2025.112881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/13/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Singlet oxygen (1O2) is the main active ingredient in photodynamic therapy (PDT). However, an excess 1O2 can cause unnecessary toxicity. Therefore, it is of great importance to develop reliable and sensitive methods or probes for detecting 1O2 in biological systems. In this study, a pair of anthryl-modified Eu(III) binaphthol-bis-β-diketones helicates, (NEt4)2[Eu2(LR/S)4] are designed, synthesized and characterized. Initially, the complexes display faint luminescence. Upon reacting with 1O2 to create endoperoxides of the anthracene framework, the long-lived luminescence of the Eu(III) complexes is activated. Notably, the high luminescence dissymmetry factor, glum of the 5D0 → 7F1 transition (595 nm) shows an obvious increase from -1.21 to -1.29 before and after oxidation. The complex exhibits a highly selective luminescent response to the 1O2 generated by 5-aminolevulinic acid (ALA) loaded 4 T1 cells during photodynamic processes. To the best of we knowledge, this is the first example of 1O2 detection based on circularly polarized luminescence (CPL) probe. The design of the lanthanide CPL probe provides a practical way for the sensitive detection of 1O2 in the future.
Collapse
Affiliation(s)
- Xiumei Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China; School of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Xinglu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Wenru Huang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Sen Yin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Yanyan Zhou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| |
Collapse
|
3
|
Pancotti G, Killalea CE, Rees TW, Liirò-Peluso L, Riera-Galindo S, Beton PH, Campoy-Quiles M, Siligardi G, Amabilino DB. Film thickness dependence of nanoscale arrangement of a chiral electron donor in its blends with an achiral electron acceptor. NANOSCALE 2025; 17:3133-3144. [PMID: 39692272 DOI: 10.1039/d4nr04269g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The nanoscale chiral arrangement in a bicomponent organic material system comprising donor and acceptor small molecules is shown to depend on the thickness of a film that is responsive to chiral light in an optoelectronic device. In this bulk heterojunction, a previously unreported chiral bis(diketopyrrolopyrrole) derivative was combined with an achiral non-fullerene acceptor. The optical activity of the chiral compound is dramatically different in the pure material and the composite, showing how the electron acceptor influences the donor's arrangement compared with the pure molecule. Mueller matrix polarimetric imaging shows the authenticity of this effect and the homogeneity of short range chiral orientations between the molecules, as well as more heterogeneous short and longer range arrangements in the films observed in linear dichroic and birefringent effects. The two-dimensional circular dichroism (CD) maps and spectra show the uniformity of the short range supramolecular interactions both in spun-cast films on quartz and blade-coated films on photovoltaic device substrates, where evidence for the chiral arrangement is uniquely provided by the synchrotron CD measurements. The external quantum efficiency of the devices depends upon the handedness of the light used to excite them and the film thickness, that influences the supramolecular arrangement and organization in the film, and determines the selectivity for left or right circularly polarised light. The difference in external quantum efficiency of the photovoltaic devices between the two handedness' of light correlates with the apparent differential absorbance (g-factor) of the films.
Collapse
Affiliation(s)
- Giulia Pancotti
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers, Bellaterra, 08193, Spain.
| | - C Elizabeth Killalea
- School of Chemistry and GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK
| | - Thomas W Rees
- School of Chemistry and GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK
| | - Letizia Liirò-Peluso
- School of Chemistry and GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK
| | - Sergi Riera-Galindo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers, Bellaterra, 08193, Spain.
| | - Peter H Beton
- School of Physics and Astronomy, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Mariano Campoy-Quiles
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers, Bellaterra, 08193, Spain.
| | - Giuliano Siligardi
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - David B Amabilino
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers, Bellaterra, 08193, Spain.
| |
Collapse
|
4
|
Chen H, Feng D, Wei F, Guo F, Cheetham AK. Hydrogen-Bond-Regulated Mechanochemical Synthesis of Covalent Organic Frameworks: Cocrystal Precursor Strategy for Confined Assembly. Angew Chem Int Ed Engl 2025; 64:e202415454. [PMID: 39377350 DOI: 10.1002/anie.202415454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/09/2024]
Abstract
Two-dimensional imine covalent organic frameworks (2D imine-COFs) are crystalline porous materials with broad application prospects. Despite the efforts into their design and synthesis, the mechanisms of their formation are still not fully understood. Herein, a one-pot two-step mechanochemical cocrystal precursor synthetic strategy is developed for efficient construction of 2D imine-COFs. The mechanistic investigation demonstrated that the cocrystal precursors of 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (TAPT) and p-toluenesulphonic acid (PTSA) sufficiently regulate the crystalline structure of COF. Evidenced by characterizations and theoretical studies, a helical hydrogen-bond network was constructed by the N-H⋅⋅⋅O supramolecular synthons between amino and sulfonic groups in TAPT-PTSA, demonstrating the role of cocrystals in promoting the organized stacking of interlayer π-π interactions, layer arrangement, and interlayer spacing, thus facilitating the orderly assembly of COFs. Moreover, the protonation degree of TAPT amines, which tuned nucleophilic directionality, enabled the sequential progression of intra- and interlayer imine condensation reactions, inhibiting the formation of amorphous polymers. The transformation from cocrystal precursors to COFs was achieved through comprehensive control of hydrogen bond and covalent bond sites. This work significantly advances the concept of hydrogen-bond-regulated COF assembly and its mechanochemical method in the design and synthesis of 2D imine-COFs, further elucidating the mechanistic aspects of their mechanochemical synthesis.
Collapse
Affiliation(s)
- Hongguang Chen
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Daming Feng
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Fengxia Wei
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis 08-03, Singapore, 138634, Singapore
| | - Fang Guo
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Anthony K Cheetham
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| |
Collapse
|
5
|
Chen K, Liu J, Andréasson J, Albinsson B, Liu T, Hou L. An efficient all-visible light-activated photoswitch based on diarylethenes and CdS quantum dots. Chem Sci 2024; 15:20365-20370. [PMID: 39574538 PMCID: PMC11577264 DOI: 10.1039/d4sc06110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
All-visible light-activated diarylethene (DAE) photoswitches are highly attractive for applications in smart photoresponsive materials. The photocyclization of DAE via the low-lying excited triplet state through triplet energy transfer (TET) from a sensitizer has been proven to be an effective approach for the realization of this scheme. However, the TET process is sensitive to oxygen and typically requires more than one sensitizer per photoswitch to facilitate sensitized photocyclization. Herein, we present a bi-component system comprising carboxylic acid-functionalized DAEs and CdS quantum dots (QDs) to achieve all-visible light-activated photoswitching. Due to the large surface area-to-volume ratio of CdS QDs and surface anchored DAEs, one CdS QD can activate at least 18 DAE molecules in the solution without oxygen exclusion. The efficiency of photocyclization of DAEs under visible light irradiation through energy transfer from CdS QDs is nearly comparable to that of direct UV light irradiation. Moreover, our strategy is adaptable for solid-state applications in the presence of air, enabling reversible writing and erasing of color and patterns by adjusting irradiation wavelengths in the visible region.
Collapse
Affiliation(s)
- Kezhou Chen
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University Tianjin 300072 China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University) Tianjin 300072 China
| | - Jiayi Liu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University Tianjin 300072 China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University) Tianjin 300072 China
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 412 96 Sweden
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 412 96 Sweden
| | - Tiegen Liu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University Tianjin 300072 China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University) Tianjin 300072 China
| | - Lili Hou
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University Tianjin 300072 China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University) Tianjin 300072 China
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 412 96 Sweden
| |
Collapse
|
6
|
Wang S, Chen Y, Liu H, He J, Bian Q, Guo J, Zhang Y, Tu Y, Chen B, Zeng Z, Xie S, Tang BZ. Mesoscale Acid-Base Complexes Display Size-Associated Photophysical Property and Photochemical Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402798. [PMID: 39004884 DOI: 10.1002/smll.202402798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Indexed: 07/16/2024]
Abstract
The properties of single molecules and molecular aggregates can differ dramatically, leading to a long-standing interest in mesoscale aggregation processes. Herein, a series of acid-base molecular complexes is developed by using a tetraphenylethylene-backboned fluorophore, and investigated the photophysical properties and photochemical activities at different aggregation length scales. This fluorophore, with two basic diethylamine groups and two acidic tetrazole groups, exhibits sparse solubility due to multivalent interactions that cause infinite aggregation. The addition of a third acid leads to the formation of fluorophore/acid complexes with good dispersibility and colloidal stability. This assembly process can be controlled by the use of different acids and their stoichiometry, resulting in aggregates ranging in size from a few to hundreds of nanometers. A crystalline structure is obtained to illustrate the complex properties of the acid-base network. Unlike the single molecule, these complexes show a trend of size-related properties for photoluminescence efficiency and photochemical activity. As the amount of acid added increases, the size of the complexes decreases, the aggregation effect of the complexes on fluorescence emission increases, and the rates of the oxidative photocyclization and photodecomposition slow down. This work may help to understand size-controlled molecular materials at the mesoscale for functional design.
Collapse
Affiliation(s)
- Shuodong Wang
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yao Chen
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Haohao Liu
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jinzhi He
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qilong Bian
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jing Guo
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang Zhang
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yujie Tu
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| | - Bo Chen
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zebing Zeng
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Sheng Xie
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
7
|
Acharjee D, Panda MK, Mahato AB, Das A, Ghosh S. Evidence of carrier diffusion between emission states in CdSe/ZnS core-shell quantum dots: a comprehensive investigation combining fluorescence lifetime correlation spectroscopy (FLCS) and single dot photoluminescence studies. NANOSCALE 2024; 16:18444-18454. [PMID: 39263802 DOI: 10.1039/d4nr02221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Investigation of carrier dynamics in CdSe/ZnS core-shell quantum dots (QDs) is performed using fluorescence-lifetime-correlation-spectroscopy (FLCS) and single-dot PL blinking studies. The origin of an emitted photon from a QD in an FLCS study is assigned to either an exciton state or trap state based on its excited state lifetime (τfl). Subsequently, two intrastate autocorrelation functions (ACFs) representing the exciton and trap states and one cross-correlation function (CCF) coupling these two states are constructed. Interestingly, the timescales of carrier diffusion (τR) show striking similarities across all three correlation functions, which further correlate with τR of the conventional FCS. However, ACFs notably deviate from the CCF in their μs progression patterns, with the latter showing growth, whereas the former ones display decay. This implies inter-state carrier diffusions leading to the QD blinking. Further study of single particle PL blinking on a surface-immobilized QD indicates shallow trap states near the band edge cause the blinking at low excitation power, while trion recombination becomes an additional contributing factor at higher pump power. Overall, the results highlight not only an excellent correlation between these two techniques but also the potential of our approach for achieving an accurate and comprehensive understanding of carrier dynamics in CdSe/ZnS QDs.
Collapse
Affiliation(s)
- Debopam Acharjee
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
| | - Mrinal Kanti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
| | - Asit Baran Mahato
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
| | - Ayendrila Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
- Center for Interdisciplinary Sciences (CIS), National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India
| |
Collapse
|
8
|
Das S, Batra A, Kundu S, Sharma R, Patra A. Unveiling autophagy and aging through time-resolved imaging of lysosomal polarity with a delayed fluorescent emitter. Chem Sci 2023; 15:102-112. [PMID: 38131076 PMCID: PMC10732132 DOI: 10.1039/d3sc02450d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023] Open
Abstract
Detecting the lysosomal microenvironmental changes like viscosity, pH, and polarity during their dynamic interorganelle interactions remains an intriguing area that facilitates the elucidation of cellular homeostasis. The subtle variation of physiological conditions can be assessed by deciphering the lysosomal microenvironments during lysosome-organelle interactions, closely related to autophagic pathways leading to various cellular disorders. Herein, we shed light on the dynamic lysosomal polarity in live cells and a multicellular model organism, Caenorhabditis elegans (C. elegans), through time-resolved imaging employing a thermally activated delayed fluorescent probe, DC-Lyso. The highly photostable and cytocompatible DC-Lyso rapidly labels the lysosomes (within 1 min of incubation) and exhibits red luminescence and polarity-sensitive long lifetime under the cellular environment. The distinct variation in the fluorescence lifetime of DC-Lyso suggests an increase in local polarity during the lysosomal dynamics and interorganelle interactions, including lipophagy and mitophagy. The lifetime imaging analysis reveals increasing lysosomal polarity as an indicator for probing the successive development of C. elegans during aging. The in vivo microsecond timescale imaging of various cancerous cell lines and C. elegans, as presented here, therefore, expands the scope of delayed fluorescent emitters for unveiling complex biological processes.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Madhya Pradesh 462066 India
| | - Abhilasha Batra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Madhya Pradesh 462066 India
| | - Subhankar Kundu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Madhya Pradesh 462066 India
| | - Rati Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Madhya Pradesh 462066 India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Madhya Pradesh 462066 India
| |
Collapse
|
9
|
Sharma S, Das S, Kaushik K, Yadav A, Patra A, Nandi CK. Unveiling the Long-Lived Emission of Copper Nanoclusters Embedded in a Protein Scaffold. J Phys Chem Lett 2023; 14:8979-8987. [PMID: 37773588 DOI: 10.1021/acs.jpclett.3c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Protein-conjugated coinage metal nanoclusters have become promising materials for optoelectronics and biomedical applications. However, the origin of the photoluminescence, especially the long-lived excited state emission in these metal nanoclusters, is still elusive. Here, we unveiled the underlying mechanism of long-lived emission in albumin protein-conjugated copper nanoclusters (Cu NCs) using steady state and time-resolved spectroscopic techniques. Our findings reveal room-temperature phosphorescence (RTP) in protein-conjugated Cu NCs. Time-resolved area-normalized spectra distinguished short- and long-lived components, where the former arises from the singlet state and the latter from the triplet state, thus resulting in RTP. The similarity of the emission spectra at room (298 K) and cryogenic (77 K) temperature ascertains the RTP phenomenon by harvesting the higher-lying triplet states. Time-gated bioimaging of A549 cells using the long-lived emission not only supports RTP emission in the cellular environment but also provides exciting avenues in long-term bioimaging using bovine serum albumin-conjugated Cu NCs.
Collapse
Affiliation(s)
- Shagun Sharma
- School of Chemical Sciences, Indian Institute of Technology (IIT), Mandi, HP 175075, India
- Advanced Materials Research Centre (AMRC), IIT, Mandi, HP 175075, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, MP 462066, India
| | - Kush Kaushik
- School of Chemical Sciences, Indian Institute of Technology (IIT), Mandi, HP 175075, India
- Advanced Materials Research Centre (AMRC), IIT, Mandi, HP 175075, India
| | - Aditya Yadav
- School of Chemical Sciences, Indian Institute of Technology (IIT), Mandi, HP 175075, India
- Advanced Materials Research Centre (AMRC), IIT, Mandi, HP 175075, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, MP 462066, India
| | - Chayan Kanti Nandi
- School of Chemical Sciences, Indian Institute of Technology (IIT), Mandi, HP 175075, India
- Advanced Materials Research Centre (AMRC), IIT, Mandi, HP 175075, India
| |
Collapse
|
10
|
De S, Das G. Surfactant-induced disaggregation of a quinoxaline AIEgen scaffold: aggregation aptitude in the solid and solution states. SOFT MATTER 2023; 19:6116-6121. [PMID: 37538008 DOI: 10.1039/d3sm00638g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We have designed five propellor-shaped molecules based on the quinoxaline scaffold with a functional group variation. They exhibit aggregation-induced emission, and the responses of these congeners regarding good solvents and poor solvents are investigated both spectroscopically and microscopically. Solid- as well as solution-state parallel analysis of the aggregation facet is laid out. Notably, L2 interacts specifically with a cationic surfactant, unlike other congeners where the mechanism proceeds via disaggregation. Real sample analysis was carried out on freshwater samples as well as waste effluent samples from domestic households and industries, thus projecting the analytical and environmental significance.
Collapse
Affiliation(s)
- Sagnik De
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
11
|
Sen S, Datta A, Tahara T. Memorial Viewpoint for Kankan Bhattacharyya. J Phys Chem B 2023; 127:3-5. [PMID: 36583852 DOI: 10.1021/acs.jpcb.2c08803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sobhan Sen
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Zhong H, Li L, Zhu S, Wang Y. Controllable self-assembly of thiophene-based π-conjugated molecule and further construction of pillar[5]arene-based host-guest white-light emission system. Front Chem 2022; 10:980173. [PMID: 36118325 PMCID: PMC9478560 DOI: 10.3389/fchem.2022.980173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Photoluminescence materials have been widely applied in biological imaging and sensing, anti-counterfeiting, light-emitting diodes, logic gates et al. The fabrication of luminescent materials with adjustable emission color by self-assembly of π-conjugated molecules has attracted particular attention. In this study, we designed and synthesized a thiophene-based α-cyanostyrene-derivative (TPPA), then investigate its self-assembly morphology and fluorescence emission under different organic solvents, different proportions of H2O/THF (DMSO) mixture and different pH conditions by UV, FL and SEM images. It was found that TPPA formed nanoparticles by self-assembly in organic solvent (THF or DMSO), accompanied by strong fluorescence emission. However, with the increase of water ratio, the fluorescence intensity decreased accompany with red shift, and the self-assembly morphology changed from nanoparticles to fibers. More interestingly, when pillar[5]arene (P5) was added to form host-guest complex with TPPA, white light emission could be successfully constructed when the ratio of TPPA to P5 was 1:20 and THF to water was 19:1.
Collapse
Affiliation(s)
- Haibo Zhong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Liang Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
- *Correspondence: Liang Li, ; Shajun Zhu, ; Yang Wang,
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Liang Li, ; Shajun Zhu, ; Yang Wang,
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
- *Correspondence: Liang Li, ; Shajun Zhu, ; Yang Wang,
| |
Collapse
|
13
|
Takemura K, Ohira K, Higashino T, Imato K, Ooyama Y. Synthesis, optical and electrochemical properties of (D–π) 2-type and (D–π) 2Ph-type fluorescent dyes. Beilstein J Org Chem 2022; 18:1047-1054. [PMID: 36105734 PMCID: PMC9443425 DOI: 10.3762/bjoc.18.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
The (D–π)2-type fluorescent dye OTT-2 with two (diphenylamino)carbazole-thiophene units as D (electron-donating group)–π (π-conjugated bridge) moiety and the (D–π)2Ph-type fluorescent dye OTK-2 with the two D–π moieties connected through a phenyl ring were derived by oxidative homocoupling of a stannyl D–π unit and Stille coupling of a stannyl D–π unit with 1,3-diiodobenzene, respectively. Their optical and electrochemical properties were investigated by photoabsorption and fluorescence spectroscopy, time-resolved fluorescence spectroscopy, cyclic voltammetry (CV) and molecular orbital (MO) calculations. In toluene the photoabsorption and fluorescence maximum wavelengths (λmax,abs and λmax,fl) of OTT-2 appear in a longer wavelength region than those of OTK-2. The fluorescence quantum yield (Φfl) of OTT-2 is 0.41, which is higher than that (Φfl = 0.36) of OTK-2. In the solid state OTT-2 shows relatively intense fluorescence properties (Φfl-solid = 0.24 nm), compared with OTK-2 (Φfl-solid = 0.15 nm). CV results demonstrated that OTT-2 and OTK-2 exhibit a reversible oxidation wave. Based on photoabsorption, fluorescence spectroscopy and CV for the two dyes, it was found that the lowest unoccupied molecular orbital (LUMO) energy level of OTT-2 is lower than that of OTK-2, but OTT-2 and OTK-2 have comparable highest occupied molecular orbital (HOMO) energy levels. Consequently, this work reveals that compared to the (D–π)2Ph-type structure, the (D–π)2-type structure exhibits not only a bathochromic shift of the photoabsorption band, but also intense fluorescence emission both in solution and the solid state.
Collapse
Affiliation(s)
- Kosuke Takemura
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Kazuki Ohira
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Taiki Higashino
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Keiichi Imato
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
14
|
Ju H, Hou L, Zhao F, Zhang Y, Jia R, Guizzo L, Bonomini A, Zhang J, Gao Z, Liang R, Bertagnin C, Kong X, Ma X, Kang D, Loregian A, Huang B, Liu X, Zhan P. Iterative Optimization and Structure-Activity Relationship Studies of Oseltamivir Amino Derivatives as Potent and Selective Neuraminidase Inhibitors via Targeting 150-Cavity. J Med Chem 2022; 65:11550-11573. [PMID: 35939763 DOI: 10.1021/acs.jmedchem.1c01970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With our continuous endeavors in seeking neuraminidase (NA) inhibitors, we reported herein three series of novel oseltamivir amino derivatives with the goal of exploring the druggable chemical space inside the 150-cavity of influenza virus NAs. Among them, around half of the compounds in series C were demonstrated to be better inhibitors against both wild-type and oseltamivir-resistant group-1 NAs than oseltamivir carboxylate (OSC). Notably, compounds 12d, 12e, 15e, and 15i showed more potent or equipotent antiviral activity against H1N1, H5N1, and H5N8 viruses compared to OSC in cellular assays. Furthermore, compounds 12e and 15e exhibited high metabolic stability in human liver microsomes (HLMs) and low inhibitory effect on main cytochrome P450 (CYP) enzymes, as well as low acute/subacute toxicity and certain antiviral efficacy in vivo. Also, pharmacokinetic (PK) and molecular docking studies were performed. Overall, 12e and 15e possess great potential to serve as anti-influenza candidates and are worthy of further investigation.
Collapse
Affiliation(s)
- Han Ju
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Lingxin Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Ying Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Laura Guizzo
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Anna Bonomini
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Ruipeng Liang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Xiujie Kong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Xiuli Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 202 North Gongye Road, 250100 Jinan, Shandong, P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 202 North Gongye Road, 250100 Jinan, Shandong, P. R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| |
Collapse
|
15
|
Sankaranarayanan RK, Venkatesh G, Ethiraj J, Pattabiraman M, Saravanakumar K, Arivazhagan G, Shanmugam R, Rajendiran N. Stepwise pesudopolyrotaxane nanostructure formation from supramolecular self-assembly by inclusion complexation of fast violet B with α- and β-cyclodextrins. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Kundu S, Das S, Jaiswal S, Patra A. Molecular to Supramolecular Self-Assembled Luminogens for Tracking the Intracellular Organelle Dynamics. ACS APPLIED BIO MATERIALS 2022; 5:3623-3648. [PMID: 35834795 DOI: 10.1021/acsabm.2c00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deciphering the dynamics of intracellular organelles has gained immense attention due to their subtle control over diverse, complex biological processes such as cellular metabolism, energy homeostasis, and autophagy. In this context, molecular materials, including small-organic fluorescent probes and their supramolecular self-assembled nano-/microarchitectures, have been employed to explore the diverse intracellular biological events. However, only a handful of fluorescent probes and self-assembled emissive structures have been successfully used to track different organelle's movements, circumventing the issues related to water solubility and long-term photostability. Thus, the water-soluble molecular fluorescent probes and the water-dispersible supramolecular self-assemblies have emerged as promising candidates to explore the trafficking of the organelles under diverse physiological conditions. In this review, we have delineated the recent progress of fluorescent probes and their supramolecular self-assemblies for the elucidation of the dynamics of diverse cellular organelles with a special emphasis on lysosomes, lipid droplets, and mitochondria. Recent advancement in fluorescence lifetime and super-resolution microscopy imaging has also been discussed to investigate the dynamics of organelles. In addition, the fabrication of the next-generation molecular to supramolecular self-assembled luminogens for probing the variation of microenvironments during the trafficking process has been outlined.
Collapse
Affiliation(s)
- Subhankar Kundu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Shilpi Jaiswal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
17
|
Affiliation(s)
- Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
| | - Nancy E Levinger
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
18
|
Bhattacharyya K. Of Molecules, Time, and Space Resolution: An Autobiography of Kankan Bhattacharyya. J Phys Chem B 2022; 126:3464-3469. [PMID: 35586922 DOI: 10.1021/acs.jpcb.2c02492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kankan Bhattacharyya
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
19
|
Deb Roy JS, Chowdhury D, Sanfui MH, Hassan N, Mahapatra M, Ghosh NN, Majumdar S, Chattopadhyay PK, Roy S, Singha NR. Ratiometric pH Sensing, Photophysics, and Cell Imaging of Nonaromatic Light-Emitting Polymers. ACS APPLIED BIO MATERIALS 2022; 5:2990-3005. [PMID: 35579235 DOI: 10.1021/acsabm.2c00297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Here, four nontraditional fluorescent polymers (NTFPs) of varying N,N-dimethyl-2-propenamide (DMPA) and butyl prop-2-enoate (BPE) mole ratios, i.e., 2:1 (NTFP1), 4:1 (NTFP2), 8:1 (NTFP3), and 16:1 (NTFP4), are prepared via random polymerization in water. The maximum fluorescence enhancement of NTFP3 makes it suitable for ratiometric pH sensing, Cu(II) sensing, and pH-dependent cell imaging of Madin-Darby canine kidney (MDCK) cells. The oxygen donor functionalities of NTFP3 involved in binding and sensing with Cu(II) ions are studied by absorption, emission, electron paramagnetic resonance, Fourier transform infrared (FTIR), and O1s/Cu2p X-ray photoelectron spectroscopies (XPS). The spectral responses of the ratiometric pH sensor within 1.5-11.5 confirm 22 and 44 nm red shifts in absorption and ratiometric emission, respectively. The striking color changes from blue (436 nm) to green (480 nm) via an increase in pH are thought to be the stabilization of the charged canonical form of tertiary amide, i.e., -C(O-)═N+(CH3)2, realized from the changes in the absorption/fluorescence spectra and XPS/FTIR analyses. The through-space n-π* interactions in the NTFP3 aggregate, N-branching-associated rigidity, and nonconventional intramolecular hydrogen bondings of adjacent NTFP3 moieties in the NTFP3 aggregate contribute to aggregation-enhanced emissions (AEEs). Here, structures of NTFP3, NTFP3 aggregate, and Cu(II)-NTFP3; absorption; n-π* interactions; hydrogen bondings; AEEs; and binding with Cu(II) are ascertained by density functional theory, time-dependent density functional theory, and reduced density gradient calculations. The excellent limits of detection and Stern-Volmer constants of NTFP3 are 2.24 nM/0.14234 ppb and 4.26 × 103 M-1 at pH = 6.5 and 0.95 nM/0.06037 ppb and 4.90 × 103 M-1 at pH = 8.0, respectively. Additionally, the Stokes shift and binding energy of NTFP3 are 13,636 cm-1/1.69 eV and -4.64 eV, respectively. The pH-dependent MDCK cell imaging ability of noncytotoxic NTFP3 is supported via fluorescence imaging and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.
Collapse
Affiliation(s)
- Joy Sankar Deb Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Md Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Narendra Nath Ghosh
- Department of Chemistry, University of Gour Banga, Mokdumpur, Malda, West Bengal 732103, India
| | - Swapan Majumdar
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala 799022, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Subhasis Roy
- Department of Chemical Engineering, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| |
Collapse
|
20
|
Gale CD, Derakhshani-Molayousefi M, Levinger NE. How to Characterize Amorphous Shapes: The Tale of a Reverse Micelle. J Phys Chem B 2022; 126:953-963. [PMID: 35080415 DOI: 10.1021/acs.jpcb.1c09439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aerosol-OT reverse micelles represent a chemical construct where surfactant molecules self-assemble to stabilize water nanodroplets 1-10 nm in diameter. Although commonly assumed to adopt a spherical shape, all-atom molecular dynamics simulations and some experimental studies predict a nonspherical shape. If these aggregates are not spherical, then what shape do they take? Because the tools needed to evaluate the shape of something that lacks regular structure, order, or symmetry are not well developed, we present a set of three intuitive metrics─coordinate-pair eccentricity, convexity, and the curvature distribution─that estimate the shape of an amorphous object, and we demonstrate their use on a simulated aerosol-OT reverse micelle. These metrics are all well-established methods and principles in mathematics, and each provides unique information about the shape. Together, these metrics provide intuitive descriptions of amorphous shapes, facilitate ways to quantify those shapes, and follow their changes over time.
Collapse
Affiliation(s)
- Christopher D Gale
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | | - Nancy E Levinger
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
21
|
Kundu S, Das S, Dutta A, Patra A. Three in One: Stimuli-Responsive Fluorescence, Solid-State Emission, and Dual-Organelle Imaging Using a Pyrene-Benzophenone Derivative. J Phys Chem B 2022; 126:691-701. [PMID: 35030009 DOI: 10.1021/acs.jpcb.1c08607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small organic luminogens, owing to their contrasting stimuli-responsive fluorescence in solution along with strong emission in aggregated and solidstates, have been employed in optoelectronic devices, sensors, and bioimaging. Pyrene derivatives usually exhibit strong fluorescence and concentration-dependent excimer/aggregate emission in solution. However, the impacts of microenvironments on the monomer and aggregate emission bands and their relative intensities in solution, solid, and supramolecular aggregates are intriguing. The present study delineates a trade-off between the monomer and aggregate emissions of a pyrene-benzophenone derivative (ABzPy) in solution, in the solid-state, and in nanoaggregates through a combined spectroscopic and microscopic approach. The impact of external stimuli (viscosity, pH) on the aggregate emission was demonstrated using steady-state and time-resolved spectroscopy, including fluorescence correlation spectroscopy and fluorescence anisotropy decay analysis. The aggregate formation was noticed at a higher concentration (>10 μM) in solution, at 77 K (5 μM), and in the solid-state due to the π-π stacking interactions (3.6 Å) between two ABzPy molecules. In contrast, no aggregate formation was observed in the viscous medium as well as in a micellar environment even at a higher concentration of ABzPy (50 μM). The crystal structure analysis further shed light on the intermolecular hydrogen-bonding-assisted solid-state emission, which was found to be highly sensitive toward external stimuli like pH and mechanical forces. The broad emission band comprising both monomer and aggregate in the aqueous dispersion of nanoaggregates was used for the specific cellular imaging of lysosomes and lipid droplets, respectively.
Collapse
Affiliation(s)
- Subhankar Kundu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Abir Dutta
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
22
|
Khodaverdi M, Hossain MS, Zhang Z, Martino RP, Nehls CW, Mozhdehi D. Pathway‐Selection for Programmable Assembly of Genetically Encoded Amphiphiles by Thermal Processing. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Masoumeh Khodaverdi
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
| | - Md Shahadat Hossain
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
| | - Zhe Zhang
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
| | - Robert P. Martino
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
| | - Connor W. Nehls
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
| | - Davoud Mozhdehi
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
- BioInspired Syracuse Institute for Material and Living Systems Syracuse University Syracuse NY 13244 USA
| |
Collapse
|
23
|
Dasgupta S, Banerjee S, Das S, Datta A. From fluorogens to fluorophores by elucidation and suppression of ultrafast excited state processes of a Schiff base. Phys Chem Chem Phys 2021; 23:19494-19502. [PMID: 34524318 DOI: 10.1039/d1cp02540f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Strategies have been explored for developing strongly fluorescent species out of a weakly fluorescent Schiff base, 2-(((pyridin-2-ylmethyl)imino)methyl)phenol (salampy). The locally excited enolic state of salampy undergoes an intramolecular proton transfer with a time constant of ca. 200 fs. The emissive cis keto state thus formed decays completely within 50 ps. Its fast decay and miniscule fluorescence quantum yield are attributed to efficient non-radiative channels associated with conformational relaxation. The anionic form, salampy-, has a significantly longer fluorescence lifetime of 800 ps. Its emissive state evolves in tens of picoseconds, from the locally excited state, by solvent and conformational relaxation. Both the neutral and anionic forms have a fluorescence lifetime of about 6 ns at 77 K, a temperature at which all activated nonradiative channels are blocked. This lifetime is similar to that obtained at room temperature, upon rigidification of the anion by complexation with Zn2+. Two such complexes have been studied. The first is binuclear, with acetate bridge between the two Zn2+ ions. The second, with ClO4- as the counterion, is mononuclear with two salampy ligands ligating the metal ion. Unlike a previous report on a different Schiff base, in which the ligands are π-stacked in its dimeric Zn2+ complex, no additional nonradiative deactivation pathway opens up in the Zn complexes of salampy, which are devoid of such stacking. The complex of salampy with Al3+ has an even longer fluorescence lifetime of 9 ns, indicating a greater degree of rigidification and consequent suppression of nonradiative processes.
Collapse
Affiliation(s)
- Souradip Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Shrobona Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Rd, Bhauri, Madhya Pradesh 462066, India
| | - Sharmistha Das
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|