Bačová P, Glynos E, Anastasiadis SH, Harmandaris V. How Does the Number of Arms Affect the Properties of Mikto-Arm Stars in a Selective Oligomeric Matrix? Insights from Atomistic Simulations.
ACS OMEGA 2021;
6:1138-1148. [PMID:
33490773 PMCID:
PMC7818313 DOI:
10.1021/acsomega.0c04167]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 05/14/2023]
Abstract
We present a simulation study of amphiphilic mikto-arm star copolymers in a selective polymer host. By means of atomistic molecular dynamics simulations, we examine the structural and dynamical properties of mikto-arm stars with varying number, n, of poly(ethylene oxide) (PEO) and polystyrene (PS) arms, (PEO) n (PS) n in a 33% wt blend with an oligomeric PEO host (o-PEO). As the number of arms increases, the stars resemble more spherical particles with less separated PEO and PS intramolecular domains. As a result of their internal morphology and associated geometrical constraints, the mikto-arm stars self-assemble either into cylindrical-like objects or a percolated network with increasing n, within the o-PEO matrix. The segmental dynamics is mostly governed by the star architecture and the heterogeneous local environment, formed by the intra- and intermolecular nanosegregation. We discuss the role of each factor and compare the results with previously published studies on mikto-arm stars.
Collapse