1
|
Kumar D, Mehta SK, Mondal PK. Non-Newtonian Solute Mixing via Protonic Exchange of a Polyelectrolyte Layer: Unveiling Formation of Electroosmotic Vortices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7624-7639. [PMID: 40067739 DOI: 10.1021/acs.langmuir.4c05290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Biochemical and medical diagnostics are two main fields in which vortex generation in microfluidic devices has several applications. Therefore, the aim of the present endeavor is to investigate the characteristics of a non-Newtonian vortex under the influence of a pH-sensitive polyelectrolyte layer (PEL)-modulated electroosmotic effect in a microchannel. Additionally, it is considered that the bulk solution pH (pHb0) and ionic concentration of the solution influence the zeta potential. Accordingly, the corresponding mathematical framework is constructed by using a numerical solver based on the finite element method and is subsequently verified against available experimental data in limiting conditions. Within the range of pHb0 and rheological parameters─Carreau number and flow behavior index─we critically analyze the PEL space charge density, net body force, and flow pattern. The current findings indicate that the existence of discrete net electrical body force patterns yields specific flow structures that enable substantial variation in the flow rate and mixing efficiency. The dominance of the basic PEL group protonic exchange at lower pHb0 and acidic PEL group protonic exchange at higher pHb0, respectively, permits positive and negative PEL space charge densities. Consequently, it is evident that the net electrical body force in PEL is extremely pHb0-dependent. Therefore, with smaller pHb0, the anticlockwise vortex with a negative flow rate is identified, whereas the clockwise vortex with a positive flow rate is predicted for larger pHb0. In turn, five distinct flow pattern regimes appear when the bulk solution pH pivots from 3 to 11. Remarkably, mixing efficiency exceeds 90% for greater diffusive Peclet numbers in highly acidic liquids. Overall, the outcomes of this study may significantly impact the design of microfluidic devices that mix and transport non-Newtonian liquids at particular pHb0 values.
Collapse
Affiliation(s)
- Dhananjay Kumar
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sumit Kumar Mehta
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pranab Kumar Mondal
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
2
|
Patwari A, Kumar A, Bakli C, Chakraborty S. Non-monotonic variation in the streaming potential in polyelectrolyte grafted nanochannels mediated by ion partitioning effects. Anal Chim Acta 2024; 1321:342997. [PMID: 39155106 DOI: 10.1016/j.aca.2024.342997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Polyelectrolyte grafted 'soft' nanochannels are known to enhance electrokinetic energy conversion efficiency, paving the way for a sustainable energy harvesting mechanism. However, the true potential of their efficacy remains to be tapped, as attributed to a deficit in accounting for the interplay between solution pH and ion partitioning effect arising due to permittivity contrast between the coated layer and the bulk media, leading to predictions of an erroneous ionic distribution and a wrongly estimated electrokinetic response. RESULTS We unravel the electrokinetic behavior of a pH-regulated zwitterionic polyelectrolyte layer grafted nanofluidic system. To this end, we derive a detailed theoretical formulation that considers the nuanced interplay between solution pH and the ion partitioning effect through a thermodynamically consistent ionic distribution. Here, for the first time, we demonstrate a non-monotonic trend in the streaming potential with an increase in the ion partitioning effect, in contrast to a monotonic increase as reported previously. Additionally, we identify a critical permittivity ratio specific to the solution pH at which maximum streaming potential can be obtained. SIGNIFICANCE We shed light on the counterintuitive effect borne from the increased ion partitioning effect, unveiling a hitherto hidden facet of electrokinetics. By elucidating the delicate balance between solution pH, ion partitioning effect, and polyelectrolyte charge, our findings offer a comprehensive understanding of the multifaceted interplay shaping soft-electrokinetic systems, thereby paving the way for transformative advancements in energy conversion technologies.
Collapse
Affiliation(s)
- Aditya Patwari
- Thermofluidics and Nanotechnology for Sustainable Energy Systems Laboratory, Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Avinash Kumar
- Thermofluidics and Nanotechnology for Sustainable Energy Systems Laboratory, School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Chirodeep Bakli
- Thermofluidics and Nanotechnology for Sustainable Energy Systems Laboratory, School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
3
|
Saha B, Chowdhury S, Sarkar S, Gopmandal PP. Electroosmotic flow modulation and dispersion of uncharged solutes in soft nanochannel. SOFT MATTER 2024; 20:6458-6489. [PMID: 39091251 DOI: 10.1039/d4sm00614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
We perform a systematic study on the modulation of electroosmotic flow (EOF), tuning the selectivity using electrolyte ions and hydrodynamic dispersion of the solute band across the soft nanochannel. The supporting walls of the channel are considered to be hydrophobic and bear non-zero surface charge. For such a channel, the inner side of the supporting rigid walls of the channel are coated with a soft polyelectrolyte layer (PEL). The inhomogeneous distribution of monomers and accompanying volume charge within the PEL is modelled via soft-step function. The dielectric permittivity of the PEL and electrolyte solution are in general different, which in turn leads to the ion partitioning effect. The impact of ion steric effects due to finite sized ions is further accounted through the modified ion activity coefficient. To model the EOF modulation considering the combined impact of the ion steric and ion partitioning effects as well as inhomogeneous distribution of monomers across the PEL, we adopt the modified Poisson-Boltzmann equation as the governing equation for electrostatic potential. The Debye-Bueche model is adopted to study the flow field across the PEL and the Stokes equation governs the EOF outside the PEL. In order to study the impact of the modulated EOF field on the dispersion of uncharged solution, we adopt three different models, i.e., a general 2D convective-diffusion model as well as cross-sectional averaged dispersion models due to Gill and late-time Taylor and Aris. Going beyond the widely employed Debye-Hückel approximation and uniform distribution of the monomer as well as accompanying volume charge, we find the results for the electric double layer (EDL) potential, EOF field and averaged throughput, by tuning the ion selectivity, etc., which is sufficient to analyze the transport of ionized liquid across the channel. The numerical results are supplemented with analytical results for the EDL potential as well as the EOF field under various limiting situations. Besides, we have further shown the impact of the modulated EOF field on the solute dispersion process. We have presented results that highlight the impact of parameters related to EOF field modulation, on solute dispersion governed by a convective-diffusive process, as well as obtaining the results for an effective dispersion coefficient. The dispersion models under the modulated EOF field adopted in the present study can thus be applied to study the dispersion process in engineered microdevices.
Collapse
Affiliation(s)
- Biswadip Saha
- Physics and Applied Mathematics Unit, Indian Statistical Institute Kolkata, Kolkata-700108, India
| | - Sourav Chowdhury
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
| | - Sankar Sarkar
- Physics and Applied Mathematics Unit, Indian Statistical Institute Kolkata, Kolkata-700108, India
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
| |
Collapse
|
4
|
Sun Y, Jiang R, Hu L, Song Y, Li M. Electrokinetic transport phenomena in nanofluidics and their applications. Electrophoresis 2023; 44:1756-1773. [PMID: 37438973 DOI: 10.1002/elps.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Much progress has been made in the electrokinetic phenomena inside nanochannels in the last decades. As the dimensions of the nanochannels are compatible to that of the electric double layer (EDL), the electrokinetics inside nanochannels indicate many unexpected behaviors, which show great potential in the fields of material science, biology, and chemistry. This review summarizes the recent development of nanofluidic electrokinetics in both fundamental and applied research. First, the techniques for constructing nanochannels are introduced to give a guideline for choosing the optimal fabrication technique based on the specific feature of the nanochannel. Then, the theories and experimental investigations of the EDL, electroosmotic flow, and electrophoresis of nanoparticles inside the nanochannels are discussed. Furthermore, the applications of nanofluidic electrokinetics in iontronics, sensing, and biomolecule separation fields are summarized. In Section 5, some critical challenges and the perspective on the future development of nanofluidic electrokinetics are briefly proposed.
Collapse
Affiliation(s)
- Ya Sun
- Department of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, P. R. China
| | - Rui Jiang
- Department of Marine Engineering, Dalian Maritime University, Dalian, Liaoning, P. R. China
| | - Lide Hu
- Department of Marine Engineering, Dalian Maritime University, Dalian, Liaoning, P. R. China
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian, Liaoning, P. R. China
| | - Mengqi Li
- Department of Marine Engineering, Dalian Maritime University, Dalian, Liaoning, P. R. China
| |
Collapse
|
5
|
Heydari A, Khatibi M, Ashrafizadeh SN. Smart nanochannels: tailoring ion transport properties through variation in nanochannel geometry. Phys Chem Chem Phys 2023; 25:26716-26736. [PMID: 37779455 DOI: 10.1039/d3cp03768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
This research explores ion transport behavior and functionality in a hybrid nanochannel that consists of two conical and cylindrical parts. The numerical investigation focuses on analyzing the length of each part in the nanochannel. The nanochannels are hybrid cavities embedded in a membrane, where the size of the conical part varies as equal to, larger than, or smaller than the cylindrical part. The nanochannel is coated with a polyelectrolyte layer that exhibits a dense charge density distribution. The charge density of the soft layer is described using the soft step distribution function. We study the electroosmotic flow, ionic current, rectification, and selectivity of the nanochannel versus bulk electrolyte concentration, the charge density of the polyelectrolyte layer, and decay length, while considering the effect of ionic partitioning. The steady-state Poisson-Nernst-Planck and Navier-Stokes equations are solved using the finite element method. The findings reveal that the nanochannel with a more extensive conical section demonstrates increased rectification, with the rectification factor rising from 1.4 to 2 at a bulk concentration of 100 mM. Additionally, the nanochannel with a longer cylindrical part exhibits improved selectivity under negative voltage conditions, while positive voltage introduces a different situation. The nanochannel with equal cylindrical and conical parts significantly affects conductivity by modifying the charge density in the soft layer, resulting in a 3.125-fold increase in conductivity under positive voltage when the charge density in the polyelectrolyte layer is raised from 25 to 100 mol m-3. This research focuses on creating intelligent nanochannels by controlling mass concentration, charge density, and collapse length, improving system performance, and optimizing properties. It also offers valuable insights into ion transport mechanisms in nanochannel systems, advancing our understanding in this field.
Collapse
Affiliation(s)
- Amirhossein Heydari
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| |
Collapse
|
6
|
Koner P, Bera S, Ohshima H. Impact of hydrodynamics and rheology of the ion partitioning effect on electrokinetic flow through a soft annulus with a retentive and absorptive wall. SOFT MATTER 2023; 19:983-998. [PMID: 36637071 DOI: 10.1039/d2sm01094a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The theoretical analysis for the mass transfer process of an oscillatory electroosmotic flow (EOF) in the fractional Jeffrey fluid model is studied through a polyelectrolyte layer (PEL) coated cylindrical annulus with reversible and irreversible wall reactions. The ion partitioning effect is observed due to the difference in permittivity of the PEL and the electrolyte solution, which is accounted for by the Born energy. Considering ion partitioning effects, analytical solutions for induced potential and axial velocity are presented, respectively in both the PEL and electrolyte region from the modified Poisson-Boltzmann equation and the Cauchy momentum equation with a proper constitutive equation, respectively. The Maxwell fluid and classical viscous Newtonian fluid models can be achieved separately by adjusting the relaxation and retardation time in the constitutive equation of this model. The analytical solution of the convection-diffusion equation for solute transport is established in the full domain. The separation of species is found to be dependent mainly on the Damköhler number, absorption parameter, phase partitioning coefficient, etc. It is observed that the osmotic pressure increases with the thickness and fixed charge density of the PEL. The velocity decreases with an increase in the permittivity difference of these layers. Our results suggest that the separation may be achieved through a difference in absorption kinetics.
Collapse
Affiliation(s)
- Priyanka Koner
- Department of Mathematics, National Institute of Technology Silchar, Silchar 788010, India.
| | - Subrata Bera
- Department of Mathematics, National Institute of Technology Silchar, Silchar 788010, India.
| | - Hiroyuki Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki Noda, Chiba, Japan
| |
Collapse
|
7
|
Deepak Kumar, Bhanuman Barman. Impact of Ion Partitioning Effect on the Electroosmotic Flow of Non-Newtonian Fluid and Ion Selectivity through Soft Nanochannel. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22600191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Seifollahi Z, Ashrafizadeh SN. Effect of charge density distribution of polyelectrolyte layer on electroosmotic flow and ion selectivity in a conical soft nanochannel. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Gidudu B, Chirwa EM. Electrokinetic extraction and recovery of biosurfactants using rhamnolipids as a model biosurfactant. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
DNA translocation through pH-dependent soft nanopores. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:905-914. [PMID: 34120216 DOI: 10.1007/s00249-021-01552-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/19/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Controlling the translocation velocity of DNA is the main challenge in the process of sequencing by means of nanopores. One of the main methods to overcome this challenge is covering the inner walls of the nanopore with a layer of polyelectrolytes, i.e., using soft nanopores. In this paper the translocation of DNA through soft nanopores, whose inner polyelectrolyte layer (PEL) charge is pH-dependent, is theoretically studied. We considered the polyelectrolyte to be made up of either acidic or basic functional groups. It was observed that the electroosmotic flow (EOF) induced by the PEL charge is in the opposite/same direction of DNA electrophoresis (EPH) when the PEL is made up of acidic/basic groups. It was found that, not only the DNA charge and consequently the EPH, but also the EOF are influenced by the electrolyte acidity. The synergy between the changes in the retardation, EOF and EPH, determines how the intensity and direction of DNA translocation alter with pH. In fact, for both cases, at mild values of pH (as long as [Formula: see text] for the case that PEL is of acidic nature), the more the pH, the less the translocation velocity. However, for PELs of acidic nature, higher values of pH increase the intensity of the EOF so much that DNA may experience a change in the translocation direction. Ultimately, conducting the process at a particular range of pH values, and at higher pH values, in the cases of using PELs of acidic nature, and basic nature, respectively, was recommended.
Collapse
|
11
|
Yang Y, Sun X, Zhao Y, Ge W, Ding Z, Liu J, Wang L, Xu X, Zhang J. Anti-tumor activity and immunogenicity of a succinoglycan riclin. Carbohydr Polym 2020; 255:117370. [PMID: 33436203 DOI: 10.1016/j.carbpol.2020.117370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022]
Abstract
Natural polysaccharides have attracted considerable interests due to diverse biological activities. Succinoglycan is an extracellular polysaccharide produced by most Agrobacterium strains. Here, we confirmed riclin was a typical succinoglycan by NMR and methylation analysis, and investigated the antitumor effects of riclin in sarcoma 180 tumor-bearing mice. The results showed that riclin inhibited the tumor growth significantly as well as cyclophosphamide (CTX). While CTX caused serious damage to spleen structure, riclin increased the spleen index and promoted lymphocytes proliferation in peripheral blood, spleen and lymph nodes. Riclin decreased splenocytes apoptosis as evidenced by alterations of B-cell lymphoma-2 family proteins and Cleaved Caspase-3 protein. Moreover, 1H nuclear magnetic resonance (NMR)-based metabolomics analysis revealed that riclin partially altered the metabolic profiles of splenocytes. In conclusion, riclin is a succinoglycan that performed strong immunogenicity and suppressed sarcoma growth in mice. Succinoglycan riclin could be a potential antitumor agent for functional food and pharmaceutical purpose.
Collapse
Affiliation(s)
- Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Xiaqing Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Lei Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| |
Collapse
|