1
|
Taghizadeh K, Luding S, Basak R, Kondic L. Understanding slow compression of frictional granular particles by network analysis. SOFT MATTER 2024; 20:6440-6457. [PMID: 39091225 DOI: 10.1039/d4sm00560k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
We consider frictional granular packings exposed to quasi-static compression rates, with a focus on systems above the jamming transition. For frictionless packings, earlier work (S. Luding et al., Soft Matter, 2022, 18(9), 1868-1884) has uncovered that the system evolution/response involves smooth evolution phases, interrupted by fast transitions (events). The general finding is that the force networks' static quantities correlate closely with the pressure, while their evolution resembles the kinetic energy for both frictionless and frictional packings. The former represents reversible (elastic) particle deformations with affine and non-affine components, whereas the latter also involves much stronger, irreversible (plastic) rearrangements of the packings. Events are associated with jumps in the overall kinetic energy as well as dramatic changes in the force networks describing the particle micro-structure. The frictional nature of particle interactions affects both their frequency and the relevant time scale magnitude. For intermediate friction, events are often followed by an unexpected slow-down during which the kinetic energy drops below its average value. We find that these slow-downs are associated with a significant decrease in the non-affine dynamics of the particles, and are strongly influenced by friction. Friction modifies the structure of the networks, both through the typical number of contacts of a particle, and by influencing topological features of the resulting networks. Furthermore, friction modifies the dynamics of the networks, with larger values of friction leading to smaller changes of the more stable networks.
Collapse
Affiliation(s)
- Kianoosh Taghizadeh
- MSM, TFE-ET, MESA+, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands.
- Institute of Applied Mechanics (CE), SC SimTech, University of Stuttgart, Germany
| | - Stefan Luding
- MSM, TFE-ET, MESA+, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands.
| | - Rituparna Basak
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA.
| | - Lou Kondic
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA.
| |
Collapse
|
2
|
Gomez AM, Nikku M, Shah S, Gradov DV, Jalali P. Collisional forces and flow characteristics of a stream of falling particles in interaction with a large stationary sphere. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
3
|
Zhang AL, Ridout SA, Parts C, Sachdeva A, Bester CS, Vollmayr-Lee K, Utter BC, Brzinski T, Graves AL. Jammed solids with pins: Thresholds, force networks, and elasticity. Phys Rev E 2022; 106:034902. [PMID: 36266877 DOI: 10.1103/physreve.106.034902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
The role of fixed degrees of freedom in soft or granular matter systems has broad applicability and theoretical interest. Here we address questions of the geometrical role that a scaffolding of fixed particles plays in tuning the threshold volume fraction and force network in the vicinity of jamming. Our two-dimensional simulated system consists of soft particles and fixed "pins," both of which harmonically repel overlaps. On the one hand, we find that many of the critical scalings associated with jamming in the absence of pins continue to hold in the presence of even dense pin latices. On the other hand, the presence of pins lowers the jamming threshold in a universal way at low pin densities and a geometry-dependent manner at high pin densities, producing packings with lower densities and fewer contacts between particles. The onset of strong lattice dependence coincides with the development of bond-orientational order. Furthermore, the presence of pins dramatically modifies the network of forces, with both unusually weak and unusually strong forces becoming more abundant. The spatial organization of this force network depends on pin geometry and is described in detail. Using persistent homology, we demonstrate that pins modify the topology of the network. Finally, we observe clear signatures of this developing bond-orientational order and broad force distribution in the elastic moduli which characterize the linear response of these packings to strain.
Collapse
Affiliation(s)
- Andy L Zhang
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Sean A Ridout
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Celia Parts
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Aarushi Sachdeva
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Cacey S Bester
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Katharina Vollmayr-Lee
- Department of Physics and Astronomy, Bucknell University, Lewisburg, Pennsylvania 17837, USA
| | - Brian C Utter
- Department of Physics, University of California at Merced, Merced, California 95343, USA
| | - Ted Brzinski
- Department of Physics and Astronomy, Haverford College, Haverford, Pennsylvania 19041, USA
| | - Amy L Graves
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| |
Collapse
|
4
|
Luding S, Taghizadeh K, Cheng C, Kondic L. Understanding slow compression and decompression of frictionless soft granular matter by network analysis. SOFT MATTER 2022; 18:1868-1884. [PMID: 35171180 DOI: 10.1039/d1sm01689j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We consider dense granular systems in three spatial dimensions exposed to slow compression and decompression, below, during, above and well above jamming. The evolution of granular systems under slow deformation is non-trivial and involves smooth, continuous, reversible (de)compression periods, interrupted by fast, discontinuous, irreversible transition events. These events are often, but not always, associated with rearrangements of particles and of the contact network. How many particles are involved in these transitions between two states can range from few to almost all in the system. An analysis of the force network that is built on top of the contact network is carried out using the tools of persistent homology. Results involve the observation that kinetic energy is correlated with the intensity of rearrangements, while the evolution of global mechanical measures, such as pressure, is strongly correlated with the evolution of the topological measures quantifying loops in the force network. Surprisingly, some transitions are clearly detected by persistent homology even though motion/rearrangement of particles is much weaker, i.e., much harder to detect or, in some cases, not observed at all.
Collapse
Affiliation(s)
- Stefan Luding
- MSM, TFE-ET, MESA+, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands.
| | - Kianoosh Taghizadeh
- MSM, TFE-ET, MESA+, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands.
- Institute of Applied Mechanics (CE), SC SimTech, University of Stuttgart, Germany
| | - Chao Cheng
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - Lou Kondic
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
5
|
Jalali P, Zhao Y, Socolar JES. Static and dynamic features of granular material failure due to upward pulling of a buried sphere by a slowly increasing force. SOFT MATTER 2021; 17:2832-2839. [PMID: 33555000 DOI: 10.1039/d0sm01914c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A spherical intruder embedded in a confined granular column is extracted by pulling it upward by an attached string. As the tension of the string gradually increases, a failure event occurs at a certain pulling force, leading to rapid upward acceleration of the intruder. The threshold force and the dynamics of the failure event are experimentally investigated for different filling heights and column diameters, using Ottawa sand and glass beads. For the Ottawa sand, we find that the failure force can be fit by a model describing the weight of the granular material in a cone with the vertex at the bottom of the intruder and a vertex angle of 72°. The agreement between the model and experiments is good for heights less than the column (tube) diameter, but measured values deviate from the model for larger heights. We also report on experiments with glass beads that reveal unexpected effects for relatively small ratios of tube diameters to grain size. The dynamics of the intruder during the failure event is studied using high-speed video analysis. The granular drag force monotonically decays during the pullout for sufficiently large tube diameters. In narrow columns, a monotonic decay of drag force after failure is observed for low heights, whereas a secondary peak can be seen in sufficiently deep and narrow columns, indicating the existence of different mechanisms of failure. The normalized drag force declines with intruder displacement closely for all tube diameters within small displacements.
Collapse
Affiliation(s)
- Payman Jalali
- School of Energy Systems, 53851 Lappeenranta-Lahti University of Technology, Lappeenranta, Finland. and Department of Physics, Duke University, Durham, NC 27708, USA.
| | - Yuchen Zhao
- Department of Physics, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|