1
|
Yan R, Liu S, Zhao N. Spiral and helical formation of passive and active polymers with stiffness heterogeneity in a spherical cavity. SOFT MATTER 2025; 21:1401-1415. [PMID: 39869073 DOI: 10.1039/d5sm00007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Biomolecules usually adopt ubiquitous circular structures which are important for their functionality. Based on three-dimensional Langevin dynamics simulations, we investigate the conformational change of a polymer confined in a spherical cavity. Both passive and active polymers with either homogeneous or heterogeneous stiffness are analyzed in a comparative manner. For a homogeneous chain, continuous rigidity along the backbone promotes a flat spiral expanding along the cavity surface, while activity-induced softening results in a less-ordered spiral structure. Stiffness heterogeneity basically plays a destructive role in spiral formation. However, as the chain is endowed with activity, the heterogeneity effect depends on the stiffness of the front edge of the chain. As the head is rigid, the flat spiral largely holds, whereas such a structure easily loses as the head is flexible. More intriguingly, a short flexible head induces a distinct compact helix in the interior of the cavity. Under low friction conditions, the prominent inertial effect leads to the break-up of both spiral and helix. In the presence of crowding, the flat spiral close to the surface keeps its stability, while the compact helix inside tends to be dissolved. Our results decipher the significant effects of activity, rigidity, confinement and crowding on modulating polymer conformations, which provides a deeper insight about mechanisms for circular structure formation of biopolymers in crowded environments.
Collapse
Affiliation(s)
- Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Shihang Liu
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
2
|
Buglakov A, Lelecova V, Chertovich A. Motility-induced collapse of an active Brownian particle polymer chain. Phys Chem Chem Phys 2025; 27:1691-1700. [PMID: 39718320 DOI: 10.1039/d4cp03731f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The ability of particles to transform absorbed energy into translational movements brings peculiar order into nonequilibrium matter. Connected together into a chain, these particles collectively behave completely differently from well-known equilibrium polymers. Examples of such systems vary from nanoscale to macroscopic objects. Herein, we demonstrate the ability of self-propelled monomer units to cause chain collapse under conditions where there is no explicit attraction between particles. The resulting conformation is heterogeneous, characterized by a dense condensed core surrounded by elongated loops and stabilized by an effective temperature gradient. Polymer segments in the condensed phase display crumpled packing. Using molecular dynamics analysis, we show that this effect is similar to motility-induced phase separation in active media.
Collapse
Affiliation(s)
- Aleksandr Buglakov
- Semenov Federal Research Center for Chemical Physics, Kosygina, 4, 119991 Moscow, Russia
- Lomonosov Moscow State University, Leninskie gory 1, 119991 Moscow, Russia.
| | - Vasilisa Lelecova
- Semenov Federal Research Center for Chemical Physics, Kosygina, 4, 119991 Moscow, Russia
- Lomonosov Moscow State University, Leninskie gory 1, 119991 Moscow, Russia.
| | - Aleksandr Chertovich
- Semenov Federal Research Center for Chemical Physics, Kosygina, 4, 119991 Moscow, Russia
- Lomonosov Moscow State University, Leninskie gory 1, 119991 Moscow, Russia.
| |
Collapse
|
3
|
Gandikota MC, Das S, Cacciuto A. Spontaneous crumpling of active spherical shells. SOFT MATTER 2024; 20:3635-3640. [PMID: 38619604 DOI: 10.1039/d4sm00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The existence of a crumpled phase for self-avoiding elastic surfaces was postulated more than three decades ago using simple Flory-like scaling arguments. Despite much effort, its stability in a microscopic environment has been the subject of much debate. In this paper we show how a crumpled phase develops reliably and consistently upon subjecting a thin spherical shell to active fluctuations. We find a master curve describing how the relative volume of a shell changes with the strength of the active forces, that applies for every shell independent of size and elastic constants. Furthermore, we extract a general expression for the onset active force beyond which a shell begins to crumple. Finally, we calculate how the size exponent varies along the crumpling curve.
Collapse
Affiliation(s)
- M C Gandikota
- Department of Chemistry, Columbia University, 3000 Broadway, NY 10027, New York, USA.
| | - Shibananda Das
- Department of Chemistry, Columbia University, 3000 Broadway, NY 10027, New York, USA.
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - A Cacciuto
- Department of Chemistry, Columbia University, 3000 Broadway, NY 10027, New York, USA.
| |
Collapse
|
4
|
Yan R, Zhao C, Zhao N. Attractive crowding effect on passive and active polymer looping kinetics. J Chem Phys 2024; 160:134902. [PMID: 38568946 DOI: 10.1063/5.0199023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Loop formation in complex environments is crucially important to many biological processes in life. In the present work, we adopt three-dimensional Langevin dynamics simulations to investigate passive and active polymer looping kinetics in crowded media featuring polymer-crowder attraction. We find polymers undergo a remarkable coil-globule-coil transition, highlighted by a marked change in the Flory scaling exponent of the gyration radius. Meanwhile, looping time as a function of the crowder's volume fraction demonstrates an apparent non-monotonic alteration. A small number of crowders induce a compact structure, which largely facilitates the looping process. While a large number of crowders heavily impede end-to-end diffusion, looping kinetics is greatly inhibited. For a self-propelled chain, we find that the attractive crowding triggers an unusual activity effect on looping kinetics. Once a globular state is formed, activity takes an effort to open the chain from the compact structure, leading to an unexpected activity-induced inhibition of looping. If the chain maintains a coil state, the dominant role of activity is to enhance diffusivity and, thus, speed up looping kinetics. The novel conformational change and looping kinetics of both passive and active polymers in the presence of attractive crowding highlight a rather distinct scenario that has no analogy in a repulsive crowding counterpart. The underlying mechanism enriches our understanding of the crucial role of attractive interactions in modulating polymer structure and dynamics.
Collapse
Affiliation(s)
- Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chaonan Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Panda A, Winkler RG, Singh SP. Characteristic features of self-avoiding active Brownian polymers under linear shear flow. SOFT MATTER 2023; 19:8577-8586. [PMID: 37905462 DOI: 10.1039/d3sm01334k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
We present Brownian dynamics simulation results of a flexible linear polymer with excluded-volume interactions under shear flow in the presence of active noise. The active noise strongly affects the polymer's conformational and dynamical properties, such as the stretching in the flow direction and compression in the gradient direction, shear-induced alignment, and shear viscosity. In the asymptotic limit of large activities and shear rates, the power-law scaling exponents of these quantities differ significantly from those of passive polymers. The chain's shear-induced stretching at a given shear rate is reduced by active noise, and it displays a non-monotonic behavior, where an initial polymer compression is followed by its stretching with increasing active force. The compression of the polymer in the gradient direction follows the relation ∼WiPe-3/4 as a function of the activity-dependent Weissenberg number WiPe, which differs from the scaling observed in passive systems ∼WiPe-1/2. The flow-induced alignment at large Péclet numbers Pe ≫ 1, where Pe is the Péclet number, and large shear rates WiPe ≫ 1 displays the scaling behavior WiPe-1/2, with an exponent differing from the passive value -1/3. Furthermore, the polymer's zero-shear viscosity displays a non-monotonic behavior, decreasing in an intermediate activity regime due to excluded-volume interactions and increasing again for large Pe. Shear thinning appears with increasing Weissenberg number with the power-laws WiPe-1/2 and WiPe-3/4 for passive and active polymers, respectively. In addition, our simulation results are compared with the results of an analytical approach, which predicts quantitatively similar behaviors for the various aforementioned physical quantities.
Collapse
Affiliation(s)
- Arindam Panda
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India.
| | - Roland G Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany.
| | - Sunil P Singh
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India.
| |
Collapse
|
6
|
Sahoo R, Chakrabarti R. Structure and dynamics of an active polymer chain inside a nanochannel grafted with polymers. SOFT MATTER 2023; 19:5978-5988. [PMID: 37497754 DOI: 10.1039/d3sm00618b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
We use computer simulations to investigate the complex dynamics of a polymer, made of active Brownian particles, inside a channel grafted internally with passive polymer chains. Our simulations reveal that this probe-polymer, if passive, exhibits a compact structure when its interaction is repulsive with the grafted chains as it tends to stay within the hollow space created along the axis of the channel. On increasing the attractive interaction, the passive probe-polymer is pulled towards the grafted polymeric region and adopts an extended structure. By contrast, switching on the activity helps the probe-polymer to escape from the local traps caused by the sticky grafted chains. The interplay between the activity of the probe-polymer and its sticky interaction with the grafted chains results in shrinking, followed by swelling as the activity is increased. To elucidate the dynamics we compute the mean square displacement (MSD) of the center of mass of the probe-polymer, which increases monotonically with activity and displays superdiffusive behavior at an intermediate time and enhanced diffusion at a long time period. In addition, compared with the attractive interaction, the active probe-polymer shows faster dynamics when the interaction is repulsive to the grafted polymers. We believe that our current study will provide insights into the structural changes and dynamics of active polymers in heterogeneous media and will be useful in designing polymer-based drug delivery vehicles.
Collapse
Affiliation(s)
- Rajiblochan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
7
|
Yan R, Tan F, Wang J, Zhao N. Conformation and dynamics of an active filament in crowded media. J Chem Phys 2023; 158:114905. [PMID: 36948796 DOI: 10.1063/5.0142559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
The structural and dynamical properties of active filamentous objects under macromolecular crowding have a great relevance in biology. By means of Brownian dynamics simulations, we perform a comparative study for the conformational change and diffusion dynamics of an active chain in pure solvents and in crowded media. Our result shows a robust compaction-to-swelling conformational change with the augment of the Péclet number. The presence of crowding facilitates self-trapping of monomers and, thus, reinforces the activity mediated compaction. In addition, the efficient collisions between the self-propelled monomers and crowders induce a coil-to-globulelike transition, indicated by a marked change of the Flory scaling exponent of the gyration radius. Moreover, the diffusion dynamics of the active chain in crowded solutions demonstrates activity-enhanced subdiffusion. The center of mass diffusion manifests rather new scaling relations with respect to both the chain length and Péclet number. The interplay of chain activity and medium crowding provides a new mechanism to understand the non-trivial properties of active filaments in complex environments.
Collapse
Affiliation(s)
- Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Tan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jingli Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Fazli Z, Naji A. Rectification of polymer translocation through nanopores by nonchiral and chiral active particles. Phys Rev E 2023; 107:024602. [PMID: 36932605 DOI: 10.1103/physreve.107.024602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
We study translocation of a flexible polymer chain through a membrane pore under the influence of active forces and steric exclusion using Langevin dynamics simulations within a minimal two-dimensional model. The active forces on the polymer are imparted by nonchiral and chiral active particles that are introduced on one side or both sides of a rigid membrane positioned across the midline of a confining box. We show that the polymer can translocate through the pore to either side of the dividing membrane in the absence of external forcing. Translocation of the polymer to a given side of the membrane is driven (hindered) by an effective pulling (pushing) exerted by the active particles that are present on that side. The effective pulling results from accumulation of active particles around the polymer. This crowding effect signifies persistent motion of active particles causing prolonged detention times for them close to the confining walls and the polymer. The effective pushing that hinders the translocation, on the other hand, results from steric collisions that occur between the polymer and active particles. As a result of the competition between these effective forces, we find a transition between two rectified cis-to-trans and trans-to-cis translocation regimes. This transition is identified by a sharp peak in the average translocation time. The effects of active particles on the transition is studied by analyzing how the translocation peak is regulated by the activity (self-propulsion) strength of these particles, their area fraction, and chirality strength.
Collapse
Affiliation(s)
- Zahra Fazli
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
| | - Ali Naji
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
| |
Collapse
|
9
|
Paul S, Majumder S, Janke W. Activity mediated globule to coil transition of a flexible polymer in a poor solvent. SOFT MATTER 2022; 18:6392-6403. [PMID: 35979819 DOI: 10.1039/d2sm00354f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the role of self-propulsion on the conformational properties of active filamentous objects has relevance in biology. In this work, we consider a flexible bead-spring model for active polymers with both attractive and repulsive interactions among the non-bonded monomers. The activity for each monomer works along its intrinsic direction of self-propulsion which changes diffusively with time. We study its kinetics in the overdamped limit, following quenching from good to poor solvent conditions. We observe that with low activities, though the kinetic pathways remain similar, the scaling exponent for the relaxation time of globule formation becomes smaller than that for the case with no activity. Interestingly, for higher activities when self-propulsion dominates over interaction energy, the polymer conformation becomes extended coil-like. There, in the steady state, the variation of the spatial extension of the polymer, measured via its gyration radius, shows two completely different scaling regimes: the corresponding Flory exponent ν changes from 1/3 to 3/5 similar to a transition of the polymer from a globular state to a self-avoiding walk. This can be explained by an interplay among the three energy scales present in the system, viz., the "ballistic", thermal, and interaction energy.
Collapse
Affiliation(s)
- Subhajit Paul
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
- International Center for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore-560089, India
| | - Suman Majumder
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201313, India
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
| |
Collapse
|
10
|
Chauhan K, Singh A. Delayed collapse transitions in a pinned polymer system. Phys Rev E 2022; 105:064505. [PMID: 35854509 DOI: 10.1103/physreve.105.064505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/05/2022] [Indexed: 11/07/2022]
Abstract
Employing Langevin dynamics simulations, we investigated the kinetics of the collapse transition for a polymer of length N when a particular monomer at a position 1≤X≤N is pinned. The results are compared with the kinetics of a free polymer. The equilibrium θ-point separating the coil from the globule phase is located by a crossover in 〈R_{g}^{2}〉/N plots of different chain lengths. Our simulation supports a three-stage mechanism for free and pinned polymer collapse: the formation of pearls, the coarsening of pearls, and the formation of a compact globule. Pinning the central monomer has negligible effects on the kinetics as it does not break the symmetry. However, pinning a monomer elsewhere causes the process to be delayed by a constant factor ϕ_{X} depending linearly upon X. The total collapse time scales with N as τ_{c}∼ϕ_{X}N^{1.60±0.03}, which implies τ_{c} is maximum when an end monomer is pinned (X=1 or N), while when pinning the central monomer (X=N/2) it is minimum and identical to that of a free polymer. The average cluster size N_{c}(t) grows in time as t^{z}, where z=1.00±0.04 for a free particle, whereas we identify two time regimes separated by a plateau for pinned polymers. At longer times, z=1.00±0.04, while it deviates in early time regimes significantly, depending on the value of X.
Collapse
Affiliation(s)
- Keerti Chauhan
- Department of Physics, Banaras Hindu University, Varanasi 221005, India
| | - Ankit Singh
- Department of Physics, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
11
|
Affiliation(s)
- Namita Jain
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
12
|
Gandikota MC, Cacciuto A. Effective forces between active polymers. Phys Rev E 2022; 105:034503. [PMID: 35428068 DOI: 10.1103/physreve.105.034503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The characterization of the interactions between two fully flexible self-avoiding polymers is one of the classic and most important problems in polymer physics. In this paper we measure these interactions in the presence of active fluctuations. We introduce activity into the problem using two of the most popular models in this field, one where activity is effectively embedded into the monomers' dynamics, and the other where passive polymers fluctuate in an explicit bath of active particles. We establish the conditions under which the interaction between active polymers can be mapped into the classical passive problem. We observe that the active bath can drive the development of strong attractive interactions between the polymers and that, upon enforcing a significant degree of overlap, they come together to form a single double-stranded unit. A phase diagram tracing this change in conformational behavior is also reported.
Collapse
Affiliation(s)
- M C Gandikota
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - A Cacciuto
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
13
|
Mousavi SM, Gompper G, Winkler RG. Active bath-induced localization and collapse of passive semiflexible polymers. J Chem Phys 2021; 155:044902. [PMID: 34340385 DOI: 10.1063/5.0058150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The conformational and dynamical properties of a passive polymer embedded in a bath of active Brownian particles (ABPs) are studied by Langevin dynamics simulations. Various activities and ABP concentrations below and above the critical values for motility-induced phase separation (MIPS) are considered. In a homogeneous ABP fluid, the embedded polymer swells with increasing bath activity, with stronger swelling for larger densities. The polymer dynamics is enhanced, with the diffusion coefficient increasing by a power-law with increasing activity, where the exponent depends on the ABP concentration. For ABP concentrations in the MIPS regime, we observe a localization of the polymer in the low-density ABP phase associated with polymer collapse for moderate activities and a reswelling for high activities accompanied by a preferred localization in the high-density ABP phase. Localization and reswelling are independent of the polymer stiffness, with stiff polymers behaving similarly to flexible polymers. The polymer collapse is associated with a slowdown of its dynamics and a significantly smaller center-of-mass diffusion coefficient. In general, the polymer dynamics can only partially be described by an effective (bath) temperature. Moreover, the properties of a polymer embedded in a homogeneous active bath deviate quantitatively from those of a polymer composed of active monomers, i.e., linear chains of ABPs; however, such a polymer exhibits qualitatively similar activity-dependent features.
Collapse
Affiliation(s)
- S Mahdiyeh Mousavi
- Theoretical Physics of Living Matter, Institute for Advanced Simulation and Institute of Biological Information Processing, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute for Advanced Simulation and Institute of Biological Information Processing, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Physics of Living Matter, Institute for Advanced Simulation and Institute of Biological Information Processing, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
14
|
Wollmann J, Kahle FJ, Bauer I, Köhler A, Strohriegl P. Versatile Approach to Well-Defined Oligofluorenes and Polyfluorenes with Low Dispersity. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|