1
|
Bair NP, Zhu Q, Staynings BA, Tree DR, Paxton WF. Ready, Set, Grow: From Micelles to Giant Vesicles via Biocatalytic Activation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15293-15300. [PMID: 39007240 DOI: 10.1021/acs.langmuir.4c01925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Controlling physicochemical processes that drive changes in supramolecular aggregates is an important objective toward creating artificial soft micro- and nanomachines. Previous research explored the morphology control of membrane-based materials subjected to externally imposed chemical stimuli. Here, we modulate the microscale morphology of pH-responsive assemblies by using biocatalysis to internally generate changes in global pH. Catalytic reactions offer flexibility in the mechanism and rate at which stimuli are introduced to responsive assemblies, ultimately enabling precision and control over size and morphology. We observed, by dynamic light scattering and fluorescence microscopy, substantial microscale differences between assemblies subjected to manually titrated pH changes compared to biocatalytically activated pH changes, including the growth of giant vesicles from micelles. Coarse-grained molecular dynamics simulations of these metastable self-assembled structures provided insight into the thermodynamics and kinetics of the preferred structures. These results demonstrate the feasibility of using biocatalytic reactions to modulate the size and morphology of supramolecular assemblies, from micelles to giant vesicles.
Collapse
Affiliation(s)
- Nicholas P Bair
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Qinyu Zhu
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Byron A Staynings
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Douglas R Tree
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Walter F Paxton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
2
|
Xu Q, Wang Y, Zheng Y, Zhu Y, Li Z, Liu Y, Ding M. Polymersomes in Drug Delivery─From Experiment to Computational Modeling. Biomacromolecules 2024; 25:2114-2135. [PMID: 38011222 DOI: 10.1021/acs.biomac.3c00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Polymersomes, composed of amphiphilic block copolymers, are self-assembled vesicles that have gained attention as potential drug delivery systems due to their good biocompatibility, stability, and versatility. Various experimental techniques have been employed to characterize the self-assembly behaviors and properties of polymersomes. However, they have limitations in revealing molecular details and underlying mechanisms. Computational modeling techniques have emerged as powerful tools to complement experimental studies and enabled researchers to examine drug delivery mechanisms at molecular resolution. This review aims to provide a comprehensive overview of the state of the art in the field of polymersome-based drug delivery systems, with an emphasis on insights gained from both experimental and computational studies. Specifically, we focus on polymersome morphologies, self-assembly kinetics, fusion and fission, behaviors in flow, as well as drug encapsulation and release mechanisms. Furthermore, we also identify existing challenges and limitations in this rapidly evolving field and suggest possible directions for future research.
Collapse
Affiliation(s)
- Qianru Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yiwei Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yuling Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zifen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
3
|
Toujani C, Padilla LA, Alhraki N, Hur SM, Ramírez-Hernández A. Self-assembly of rod-coil-rod block copolymers in a coil-selective solvent: coarse-grained simulation results. SOFT MATTER 2024; 20:3131-3142. [PMID: 38497125 DOI: 10.1039/d4sm00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The solution self-assembly of amphiphilic polymers provides a versatile approach to design novel nanostructured materials. Multiblock polymers, particularly those composed of liquid crystalline and coil blocks, are of significant interest due to the potential display of nematic ordering in liquid crystalline domains, offering intriguing optical and mechanical properties. In this study, dissipative particle dynamics is used to investigate the solution self-assembly of rod-coil-rod copolymers in a coil-selective solvent. Extensive molecular simulations were conducted to elucidate the impact of polymer composition, concentration and flexibility on the self-assembly behavior. A quantitative analysis was performed to investigate how polymer conformations varied with changes in composition, concentration, and rigidity. Simulation results show that, at small rod compositions, rod-coil-rod polymers self-assemble into micelles at low concentrations, transitioning to network formation as concentration increases. An increase in rod composition leads to the formation of larger aggregates, resulting in cylindrical micelles and membranes. The results reported here also offer insights into the role of flexibility in shaping the self-assembly behavior of rod-coil-rod triblocks in selective solvents, thus, contributing to a comprehensive understanding of the factors governing the formation of diverse structures in the solution self-assembly of triblock copolymers.
Collapse
Affiliation(s)
- Chiraz Toujani
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Luis A Padilla
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Nour Alhraki
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Su-Mi Hur
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Abelardo Ramírez-Hernández
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, USA.
| |
Collapse
|
4
|
Salinas-Soto CA, Choe Y, Hur SM, Ramírez-Hernández A. Exploring conformations of comb-like polymers with varying grafting density in dilute solutions. J Chem Phys 2023; 159:114901. [PMID: 37712792 DOI: 10.1063/5.0160824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Comb-like polymers have shown potential as advanced materials for a diverse palette of applications due to the tunability of their polymer architecture. To date, however, it still remains a challenge to understand how the conformational properties of these polymers arise from the interplay of their architectural parameters. In this work, extensive simulations were performed using dissipative particle dynamics to investigate the effect of grafting density, backbone length, and sidechain length on the conformations of comb-like polymers immersed in a good solvent. To quantify the effect of these architectural parameters on polymer conformations, we computed the asphericity, radius of gyration, and backbone and sidechain end-to-end distances. Bond-bond correlation functions and effective Kuhn lengths were computed to quantify the topological stiffness induced by sidechain-sidechain interactions. Simulation results reveal that the effective Kuhn length increases as grafting density and sidechain length increase, in agreement with previous experimental and theoretical studies. This increase in stiffness results in comb-like polymers adopting extended conformations as grafting density and sidechain length increase. Simulation results regarding the radius of gyration of comb-like polymers as a function of grafting density are compared with scaling theory predictions based on a free energy proposed by Morozova and Lodge [ACS Macro Lett. 6, 1274-1279 (2017)] and scaling arguments by Tang et al. [Macromolecules 55, 8668-8675 (2022)].
Collapse
Affiliation(s)
- Carlos A Salinas-Soto
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Yeojin Choe
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Su-Mi Hur
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Abelardo Ramírez-Hernández
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| |
Collapse
|
5
|
Kim TY, Hur SM, Ramírez-Hernández A. Effect of Block Sequence on the Solution Self-Assembly of Symmetric ABCBA Pentablock Polymers in a Selective Solvent. J Phys Chem B 2023; 127:2575-2586. [PMID: 36917777 DOI: 10.1021/acs.jpcb.2c07930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Solution self-assembly of multiblock polymers offers a platform to create complex functional self-assembled nanostructures. However, a complete understanding of the effect of the different single-molecule-level parameters and solution conditions on the self-assembled morphology is still lacking. In this work, we have used dissipative particle dynamics to investigate the solution self-assembly of symmetric ABCBA linear pentablock polymers in a selective solvent and examined the effect of the block sequence, composition, and polymer concentration on the final morphology and polymer conformations. We confirmed that block sequence has an effect on the self-assembled morphologies, and it has a strong influence on polymer conformations that give place to physical gels for the sequence where the solvophilic block is located in the middle of the macromolecule. Our results are summarized in terms of morphology diagrams in the composition-concentration parameter space.
Collapse
Affiliation(s)
- Tae-Yi Kim
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Su-Mi Hur
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Abelardo Ramírez-Hernández
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
6
|
Zhu Q, Tree DR. Simulations of morphology control of self‐assembled amphiphilic surfactants. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Qinyu Zhu
- Department of Chemical Engineering Brigham Young University Provo Utah USA
| | - Douglas R. Tree
- Department of Chemical Engineering Brigham Young University Provo Utah USA
| |
Collapse
|
7
|
Comprehensive review of the interfacial behavior of water/oil/surfactant systems using dissipative particle dynamics simulation. Adv Colloid Interface Sci 2022; 309:102774. [PMID: 36152373 DOI: 10.1016/j.cis.2022.102774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022]
Abstract
A comprehensive understanding of interfacial behavior in water/oil/surfactant systems is critical to evaluating the performance of emulsions in various industries, specifically in the oil and gas industry. To gain fundamental knowledge regarding this interfacial behavior, atomistic methods, e.g., molecular dynamics (MD) simulation, can be employed; however, MD simulation cannot handle phenomena that require more than a million atoms. The coarse-grained mesoscale methods were introduced to resolve this issue. One of the most effective mesoscale coarse-grained approaches for simulating colloidal systems is dissipative particle dynamics (DPD), which bridges the gap between macroscopic time and length scales and molecular-scale simulation. This work reviews the fundamentals of DPD simulation and its progress on colloids and interface systems, especially surfactant/water/oil mixtures. The effects of temperature, salt content, a water/oil ratio, a shear rate, and a type of surfactant on the interfacial behavior in water/oil/surfactant systems using DPD simulation are evaluated. In addition, the obtained results are also investigated through the lens of the chemistry of surfactants and emulsions. The outcome of this comprehensive review demonstrates the importance of DPD simulation in various processes with a focus on the colloidal and interfacial behavior of surfactants at water-oil interfaces.
Collapse
|
8
|
Bulgakov AI, Ivanov VA, Vasilevskaya VV. Self-Assembly of Gel-Like Particles and Vesicles in Solutions of Polymers with Amphiphilic Repeat Unit. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Fan R, Habibi P, Padding J, Hartkamp R. Coupling mesoscale transport to catalytic surface reactions in a hybrid model. J Chem Phys 2022; 156:084105. [DOI: 10.1063/5.0081829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rong Fan
- Delft University of Technology, Netherlands
| | | | | | - Remco Hartkamp
- Process & Energy, Delft University of Technology, Netherlands
| |
Collapse
|
10
|
Procházka K, Limpouchová Z, Štěpánek M, Šindelka K, Lísal M. DPD Modelling of the Self- and Co-Assembly of Polymers and Polyelectrolytes in Aqueous Media: Impact on Polymer Science. Polymers (Basel) 2022; 14:404. [PMID: 35160394 PMCID: PMC8838752 DOI: 10.3390/polym14030404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
This review article is addressed to a broad community of polymer scientists. We outline and analyse the fundamentals of the dissipative particle dynamics (DPD) simulation method from the point of view of polymer physics and review the articles on polymer systems published in approximately the last two decades, focusing on their impact on macromolecular science. Special attention is devoted to polymer and polyelectrolyte self- and co-assembly and self-organisation and to the problems connected with the implementation of explicit electrostatics in DPD numerical machinery. Critical analysis of the results of a number of successful DPD studies of complex polymer systems published recently documents the importance and suitability of this coarse-grained method for studying polymer systems.
Collapse
Affiliation(s)
- Karel Procházka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Zuzana Limpouchová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Karel Šindelka
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
| | - Martin Lísal
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632, 400 96 Ústí n. Labem, Czech Republic
| |
Collapse
|
11
|
Paruchuri BC, Gopal V, Sarupria S, Larsen J. Toward enzyme-responsive polymersome drug delivery. Nanomedicine (Lond) 2021; 16:2679-2693. [PMID: 34870451 DOI: 10.2217/nnm-2021-0194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In drug delivery, enzyme-responsive drug carriers are becoming increasingly relevant because of the growing association of disease pathology with enzyme overexpression. Polymersomes are of interest to such applications because of their tunable properties. While polymersomes open up a wide range of chemical and physical properties to explore, they also present a challenge in developing generalized rules for the synthesis of novel systems. Motivated by this issue, in this perspective, we summarize the existing knowledge on enzyme-responsive polymersomes and outline the main design choices. Then, we propose heuristics to guide the design of novel systems. Finally, we discuss the potential of an integrated approach using computer simulations and experimental studies to streamline this design process and close the existing knowledge gaps.
Collapse
Affiliation(s)
| | - Varun Gopal
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 29631, USA.,Department of Chemical Engineering & Material Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sapna Sarupria
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 29631, USA.,Center for Optical Materials Science & Engineering Technologies (COMSET), Clemson University, Clemson, SC 29670, USA.,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jessica Larsen
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 29631, USA.,Department of Bioengineering, Clemson University, Clemson, SC 29631, USA
| |
Collapse
|