1
|
Xu H, Zhang S, Song K, Yang H, Yin J, Huang Y. Droplet-based 3D bioprinting for drug delivery and screening. Adv Drug Deliv Rev 2025; 217:115486. [PMID: 39667692 DOI: 10.1016/j.addr.2024.115486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Recently, the conventional criterion of "one-size-fits-all" is not qualified for each individual patient, requiring precision medicine for enhanced therapeutic effects. Besides, drug screening is a high-cost and time-consuming process which requires innovative approaches to facilitate drug development rate. Benefiting from consistent technical advances in 3D bioprinting techniques, droplet-based 3D bioprinting techniques have been broadly utilized in pharmaceutics due to the noncontact printing mechanism and precise control on the deposition position of droplets. More specifically, cell-free/cell-laden bioinks which are deposited for the fabrication of drug carriers/3D tissue constructs have been broadly utilized for precise drug delivery and high throughput drug screening, respectively. This review summarizes the mechanism of various droplet-based 3D bioprinting techniques and the most up-to-date applications in drug delivery and screening and discusses the potential improvements of droplet-based 3D bioprinting techniques from both technical and material aspects. Through technical innovations, materials development, and the assistance from artificial intelligence, the formation process of drug carriers will be more stable and accurately controlled guaranteeing precise drug delivery. Meanwhile, the shape fidelity and uniformity of the printed tissue models will be significantly improved ensuring drug screening efficiency and efficacy.
Collapse
Affiliation(s)
- Heqi Xu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Shaokun Zhang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | | | - Huayong Yang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China.
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Glader C, Jeitler R, Stanzer S, Harbusch N, Prietl B, El-Heliebi A, Selmani A, Fröhlich E, Mussbacher M, Roblegg E. Investigation of nanostructured lipid carriers for fast intracellular localization screening using the Echo liquid handler. Int J Pharm 2024; 665:124698. [PMID: 39277150 DOI: 10.1016/j.ijpharm.2024.124698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
In the field of precision medicine, therapy is optimized individually for each patient, enhancing efficacy while reducing side effects. This involves the identification of promising drug candidates through high-throughput screening on human derived cells in culture. However, screening of drugs which have poor solubility or permeability remains challenging, especially when targeting intracellular components. Therefore, encapsulation of drugs into advanced delivery systems such as nanostructured lipid carries (NLC) becomes necessary. Here we show that the cellular uptake of NLC with different matrix compositions can be assessed in a high-throughput screening system based on acoustic droplet ejection (ADE) technology (Echo liquid handler). Our findings indicate that surface tension and viscosity of the NLC dispersions need to be tailored to enable a reliable ADE transfer. The automated NLC uptake studies indicated that the composition of the matrix, more specifically the amount of oleic acid, significantly influenced cellular uptake. The data obtained were corroborated by imaging based and spectral flow cytometry cellular uptake studies. These findings thus not only provide the basis for a screening tool to rapidly identify the efficacy of NLC uptake but also enable a next step toward precision high-throughput drug screening under consideration of an optimized drug delivery system.
Collapse
Affiliation(s)
- Christina Glader
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria.
| | - Ramona Jeitler
- University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria.
| | - Stefanie Stanzer
- CBmed GmbH Stiftingtalstraße 5, 8010 Graz, Austria; Medical University of Graz, Division of Oncology, Department of Internal Medicine, Auenbruggerplatz 15, 8036 Graz, Austria.
| | | | - Barbara Prietl
- CBmed GmbH Stiftingtalstraße 5, 8010 Graz, Austria; Medical University of Graz, Division of Endocrinology and Diabetology, Department of Internal Medicine, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Amin El-Heliebi
- CBmed GmbH Stiftingtalstraße 5, 8010 Graz, Austria; Medical University of Graz, Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Atida Selmani
- University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria.
| | - Eleonore Fröhlich
- Medical University of Graz, Center for Medical Research, Stiftingtalstraße 24, 8010 Graz, Austria.
| | - Marion Mussbacher
- University of Graz, Institute of Pharmaceutical Sciences, Pharmacology & Toxicology, Humboldtstraße 46, 8010 Graz, Austria.
| | - Eva Roblegg
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria.
| |
Collapse
|
3
|
Schuster J, Kamuju V, Zhou J, Mathaes R. Piston-driven automated liquid handlers. SLAS Technol 2024; 29:100128. [PMID: 38508238 DOI: 10.1016/j.slast.2024.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/16/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Laboratory capacities are often limited by time-consuming manual repetitive procedures rather than analysis time itself. While modern instruments are typically equipped with an autosampler, sample preparation often follows manual procedures including many labor-intensive, monotonous tasks. Particularly, for a high number of samples, well plates, and low microliter pipetting, manual preparation is error-prone often requiring repeated experiments. Sampling and sample preparation can account for greater analytical variability than instrument analysis. Repetitive tasks such as liquid handling benefit strongly from technological advances and led to the increasing applications of various automated liquid handlers (ALHs). In this review, we discuss the considerations for ALHs in the microliter range and highlight advantages and challenges when transforming from manual to automated workflows. We strongly focused on differences in liquid handling and outlined advantages due to sensor-controlled pipetting. ALHs can substantially improve costs-effectiveness and laboratory capacity. This is a consequence of increased efficiency, and throughput of laboratories while simultaneously raising data quality. Additionally, ALHs can improve safety, documentation of data, and sustainability. While automation requires careful consideration and resource demanding implementation, we believe it offers numerous advantages and can help to transform modern laboratories.
Collapse
Affiliation(s)
- Joachim Schuster
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland.
| | - Vinay Kamuju
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| | - Jin Zhou
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| | - Roman Mathaes
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| |
Collapse
|
4
|
Hobson EC, Li W, Friend NE, Putnam AJ, Stegemann JP, Deng CX. Crossover of surface waves and capillary-viscous-elastic transition in soft biomaterials detected by resonant acoustic rheometry. Biomaterials 2023; 302:122282. [PMID: 37672999 DOI: 10.1016/j.biomaterials.2023.122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
Viscoelastic properties of hydrogels are important for their application in science and industry. However, rheological assessment of soft hydrogel biomaterials is challenging due to their complex, rapid, and often time-dependent behaviors. Resonant acoustic rheometry (RAR) is a newly developed technique capable of inducing and measuring resonant surface waves in samples in a non-contact fashion. By applying RAR at high temporal resolution during thrombin-induced fibrin gelation and ultraviolet-initiated polyethylene glycol (PEG) polymerization, we observed distinct changes in both frequency and amplitude of the resonant surface waves as the materials changed over time. RAR detected a series of capillary-elastic, capillary-viscous, and visco-elastic transitions that are uniquely manifested as crossover of different types of surface waves in the temporally evolving materials. These results reveal the dynamic interplay of surface tension, viscosity, and elasticity that is controlled by the kinetics of polymerization and crosslinking during hydrogel formation. RAR overcomes many limitations of conventional rheological approaches by offering a new way to comprehensively and longitudinally characterize soft materials during dynamic processes.
Collapse
Affiliation(s)
- Eric C Hobson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 40109, USA
| | - Weiping Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 40109, USA
| | - Nicole E Friend
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 40109, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 40109, USA
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 40109, USA.
| | - Cheri X Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 40109, USA.
| |
Collapse
|
5
|
Luo Q, Shang K, Zhu J, Wu Z, Cao T, Ahmed AAQ, Huang C, Xiao L. Biomimetic cell culture for cell adhesive propagation for tissue engineering strategies. MATERIALS HORIZONS 2023; 10:4662-4685. [PMID: 37705440 DOI: 10.1039/d3mh00849e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Biomimetic cell culture, which involves creating a biomimetic microenvironment for cells in vitro by engineering approaches, has aroused increasing interest given that it maintains the normal cellular phenotype, genotype and functions displayed in vivo. Therefore, it can provide a more precise platform for disease modelling, drug development and regenerative medicine than the conventional plate cell culture. In this review, initially, we discuss the principle of biomimetic cell culture in terms of the spatial microenvironment, chemical microenvironment, and physical microenvironment. Then, the main strategies of biomimetic cell culture and their state-of-the-art progress are summarized. To create a biomimetic microenvironment for cells, a variety of strategies has been developed, ranging from conventional scaffold strategies, such as macroscopic scaffolds, microcarriers, and microgels, to emerging scaffold-free strategies, such as spheroids, organoids, and assembloids, to simulate the native cellular microenvironment. Recently, 3D bioprinting and microfluidic chip technology have been applied as integrative platforms to obtain more complex biomimetic structures. Finally, the challenges in this area are discussed and future directions are discussed to shed some light on the community.
Collapse
Affiliation(s)
- Qiuchen Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Keyuan Shang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Jing Zhu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Zhaoying Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Tiefeng Cao
- Department of Gynaecology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510070, China
| | - Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Chixiang Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
6
|
Ning J, Lei Y, Hu H, Gai C. A Comprehensive Review of Surface Acoustic Wave-Enabled Acoustic Droplet Ejection Technology and Its Applications. MICROMACHINES 2023; 14:1543. [PMID: 37630082 PMCID: PMC10456473 DOI: 10.3390/mi14081543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
This review focuses on the development of surface acoustic wave-enabled acoustic drop ejection (SAW-ADE) technology, which utilizes surface acoustic waves to eject droplets from liquids without touching the sample. The technology offers advantages such as high throughput, high precision, non-contact, and integration with automated systems while saving samples and reagents. The article first provides an overview of the SAW-ADE technology, including its basic theory, simulation verification, and comparison with other types of acoustic drop ejection technology. The influencing factors of SAW-ADE technology are classified into four categories: fluid properties, device configuration, presence of channels or chambers, and driving signals. The influencing factors discussed in detail from various aspects, such as the volume, viscosity, and surface tension of the liquid; the type of substrate material, interdigital transducers, and the driving waveform; sessile droplets and fluid in channels/chambers; and the power, frequency, and modulation of the input signal. The ejection performance of droplets is influenced by various factors, and their optimization can be achieved by taking into account all of the above factors and designing appropriate configurations. Additionally, the article briefly introduces the application scenarios of SAW-ADE technology in bioprinters and chemical analyses and provides prospects for future development. The article contributes to the field of microfluidics and lab-on-a-chip technology and may help researchers to design and optimize SAW-ADE systems for specific applications.
Collapse
Affiliation(s)
| | | | - Hong Hu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; (J.N.)
| | | |
Collapse
|
7
|
Courson R, Bratash O, Maziz A, Desmet C, Meza RA, Leroy L, Engel E, Buhot A, Malaquin L, Leïchlé T. Rapid prototyping of a polymer MEMS droplet dispenser by laser-assisted 3D printing. MICROSYSTEMS & NANOENGINEERING 2023; 9:85. [PMID: 37408536 PMCID: PMC10318032 DOI: 10.1038/s41378-023-00559-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 07/07/2023]
Abstract
In this work, we introduce a polymer version of a previously developed silicon MEMS drop deposition tool for surface functionalization that consists of a microcantilever integrating an open fluidic channel and a reservoir. The device is fabricated by laser stereolithography, which offers the advantages of low-cost and fast prototyping. Additionally, thanks to the ability to process multiple materials, a magnetic base is incorporated into the cantilever for convenient handling and attachment to the holder of a robotized stage used for spotting. Droplets with diameters ranging from ∼50 µm to ∼300 µm are printed upon direct contact of the cantilever tip with the surface to pattern. Liquid loading is achieved by fully immersing the cantilever into a reservoir drop, where a single load results in the deposition of more than 200 droplets. The influences of the size and shape of the cantilever tip and the reservoir on the printing outcome are studied. As a proof-of-concept of the biofunctionalization capability of this 3D printed droplet dispenser, microarrays of oligonucleotides and antibodies displaying high specificity and no cross-contamination are fabricated, and droplets are deposited at the tip of an optical fiber bundle.
Collapse
Affiliation(s)
- Rémi Courson
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Oleksii Bratash
- Université Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France
| | - Ali Maziz
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Cloé Desmet
- Université Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France
| | | | - Loïc Leroy
- Université Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France
| | - Elodie Engel
- Université Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France
| | - Arnaud Buhot
- Université Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France
| | | | - Thierry Leïchlé
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
- Georgia Tech−CNRS International Research Laboratory, Atlanta, GA 30332 USA
| |
Collapse
|
8
|
Guo Q, Zhang J, Li D, Yu H. Effect of Wettability on the Collision Behavior of Acoustically Excited Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7408-7417. [PMID: 37186956 DOI: 10.1021/acs.langmuir.3c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Acoustic droplet ejection (ADE) is a noncontact technique for micro-liquid handling (usually nanoliters or picoliters) that is not restricted by nozzles and enables high-throughput liquid dispensing without sacrificing precision. It is widely regarded as the most advanced solution for liquid handling in large-scale drug screening. Stable coalescence of the acoustically excited droplets on the target substrate is a fundamental requirement during the application of the ADE system. However, it is challenging to investigate the collision behavior of nanoliter droplets flying upward during the ADE. In particular, the dependence of the droplet's collision behavior on substrate wettability and droplet velocity has yet to be thoroughly analyzed. In this paper, the kinetic processes of binary droplet collisions were investigated experimentally for different wettability substrate surfaces. Four states occur as the droplet collision velocity increases: coalescence after minor deformation, complete rebound, coalescence during rebound, and direct coalescence. For the hydrophilic substrate, there are wider ranges of Weber number (We) and Reynolds number (Re) in the complete rebound state. And with the decrease of the substrate wettability, the critical Weber and Reynolds numbers for the coalescence during rebound and the direct coalescence decrease. It is further revealed that the hydrophilic substrate is susceptible to droplet rebound because the sessile droplet has a larger radius of curvature and the viscous energy dissipation is greater. Besides, the prediction model of the maximum spreading diameter was established by modifying the droplet morphology in the complete rebound state. It is found that, under the same Weber and Reynolds numbers, droplet collisions on the hydrophilic substrate achieve a smaller maximum spreading coefficient and greater viscous energy dissipation, so the hydrophilic substrate is prone to droplet bounce.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Jialu Zhang
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Haixia Yu
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Wen TL, Bai JH, Bao MM, Qin Y, Su Y, Guo YL. Ultrasonic sample introduction combined with flame assisted thermal ionization: Pretreatment-free direct mass spectrometry analysis for fraction collecting tubes of preparative liquid chromatography. Talanta 2023; 259:124508. [PMID: 37043878 DOI: 10.1016/j.talanta.2023.124508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Ultrasonic sample introduction combined with flame assisted thermal ionization mass spectrometry (USI-FATI-MS) was developed to monitor the fractions of preparative liquid chromatography. Recently, ultrasound-based sample introduction techniques have achieved great advance in the field of high-throughput analysis. However, it is still a challenge to directly apply these existing techniques to the analysis of macro volume samples (mL level). In this work, ultrasonic sample introduction combined with flame assisted thermal ionization was used for pretreatment-free direct mass spectrometry analysis of micro to macro volume samples (μL-mL level). Utilizing this unique design of ultrasonic sample introduction, liquid sample in the container can be quickly atomized to the gas phase without contact. Then, due to the flame assisted thermal ionization source, desolvation and ionization of the sample droplets will occur immediately. USI-FATI-MS has shown excellent sensitivity, repeatability and great compatibility to solvents and compounds with a wide range of polarity. As a proof of concept, USI-FATI-MS has been applied for rapid monitoring and identification of purified synthetic and natural products in fractions.
Collapse
Affiliation(s)
- Tian-Lun Wen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jia-Hui Bai
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ming-Mai Bao
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yong Qin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yin-Long Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
10
|
Wiebach V. "What I wish I had known before starting my PhD". ANALYTICAL SCIENCE ADVANCES 2023; 4:6-12. [PMID: 38715583 PMCID: PMC10989638 DOI: 10.1002/ansa.202200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 11/17/2024]
Abstract
As a rather recent PhD graduate and still an "early career researcher", the author wondered what to write about that would be interesting for a young scientist. The answer came while overhearing students in the break room stating, "I wish I had known all that before starting my PhD that would have made everything easier!" - An experience many researchers are very familiar with. From simple tricks for laboratory work to choosing the right software or planning the next career steps, this was a reoccurring theme during the career of the author, who will try to give a short personal overview for young researchers, especially in the analytics and/or natural products field. These topics and lists represent a personal opinion and are neither meant to be all-encompassing nor of course might differ from the experiences of other researchers.
Collapse
Affiliation(s)
- Vincent Wiebach
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
11
|
Zub K, Hoeppener S, Schubert US. Inkjet Printing and 3D Printing Strategies for Biosensing, Analytical, and Diagnostic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105015. [PMID: 35338719 DOI: 10.1002/adma.202105015] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Inkjet printing and 3D inkjet printing have found many applications in the fabrication of a great variety of devices, which have been developed with the aim to improve and simplify the design, fabrication, and performance of sensors and analytical platforms. Here, developments of these printing technologies reported during the last 10 years are reviewed and their versatile applicability for the fabrication of improved sensing platforms and analytical and diagnostic sensor systems is demonstrated. Illustrative examples are reviewed in the context of particular advantages provided by inkjet printing technologies. Next to aspects of device printing and fabrication strategies, the utilization of inkjet dispensing, which can be implemented into common analytical tools utilizing customized inkjet printing equipment as well as state-of-the-art consumer inkjet printing devices, is highlighted. This review aims to providing a comprehensive overview of examples integrating inkjet and 3D inkjet printing technologies into device layout fabrication, dosing, and analytical applications to demonstrate the versatile applicability of these technologies, and furthermore, to inspire the utilization of inkjet printing for future developments.
Collapse
Affiliation(s)
- Karina Zub
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
12
|
Simulations and Experimental Analysis of a High Viscosity Inkjet Printing Device Based on Fabry-Pérot Resonator. SENSORS 2022; 22:s22093363. [PMID: 35591053 PMCID: PMC9104864 DOI: 10.3390/s22093363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022]
Abstract
The study investigates the effect of changing various input parameters on the pressure responses at acoustic cavities of a droplet-based acoustic printing device consisting of a Fabry–Pérot (FP) resonator and a standing wave-source chamber. The standing wave of the acoustic radiation pressure at the FP resonator is analyzed. The behavior of the standing wave and acoustic radiation force at the FP resonator is presented and compared with the measured results by varying the position of the standing wave-generating plate. The pressure changes inside the standing wave-source chamber are investigated and discussed to determine the reason for the sudden high-pressure drop at the FP resonator. Furthermore, the effects of inserting the nozzle and droplet inside the FP resonator on the standing wave and acoustic radiation force are analyzed. Experimental analysis is performed by collecting acoustic pressure data at the outlet of the FP resonator. The simulated and measured pressure drop behaviors are compared. The presented numerical approach can be used to set optimal design guidelines for obtaining a higher acoustic pressure inside the acoustic cavities of droplet-based acoustic jetting and other acoustofluidic devices.
Collapse
|
13
|
Guo Q, Shao M, Su X, Zhang X, Yu H, Li D. Controllable Droplet Ejection of Multiple Reagents through Focused Acoustic Beams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14805-14812. [PMID: 34902972 DOI: 10.1021/acs.langmuir.1c02450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acoustic droplet ejection (ADE) technology has revolutionized fluid handling with its contactless and fast fluid transfer. For precise droplet ejection and stable droplet coalescence at the target substrates for further detection, the input power of the ADE system needs to be adjusted. Currently, the existing power control method depends on scanning the source fluid wells one by one, which cannot afford precise and highly efficient droplet velocity adjustment, and the complicated operation caused by the repeated power evaluation processes for thousands of fluid transfers will waste much time. We propose a new method, which realizes the controllable ejection of multiple reagents by analyzing the effect of the product of kinematic viscosity and surface tension of the reagents on the droplet initial velocity. The experimental results obtained by ejecting dimethyl sulfoxide coincide well with the predicted results, and the relative error in the droplet initial velocity is mostly less than 8%. On the basis of the input power prediction method proposed in this paper, the ADE system is successfully constructed for continuous dispensing of polystyrene microspheres as cell surrogates, which provided an advanced liquid handling solution for research in biochemistry and other fields.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Mengchuan Shao
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiao Su
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xingguo Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Haixia Yu
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|