1
|
Yu X, Su Q, Chang X, Chen K, Yuan P, Liu T, Tian R, Bai Y, Zhang Y, Chen X. Multimodal obstruction of tumorigenic energy supply via bionic nanocarriers for effective tumor therapy. Biomaterials 2021; 278:121181. [PMID: 34653932 DOI: 10.1016/j.biomaterials.2021.121181] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/05/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Sufficient energy generation based on effective transport of nutrient via abundant blood vessels in tumor tissue and subsequent oxidative metabolism in mitochondria is critical for growth, proliferation and migration of tumor. Thus the strategy to cut off this transport pathway (blood vessels) and simultaneously close the power house (mitochondria) is highly desired for tumor treatment. Herein, we fabricated a bionic nanocarrier with core-shell-corona structure to give selective and effective tumor therapy via stepwise destruction of existed tumor vessel, inhibition of tumor angiogenesis and dysfunction of tumor mitochondria. The core of this bionic nanocarrier consists of combretastatin A4 phosphate (CA4P) and vitamin K2 (VK2) co-loaded mesoporous silica nanoparticle (MSNs), which is in charge of the vasculature destruction and mitochondrial dysfunction after cargos release. The N-tert-butylacrylamide (TBAM) and tri-sulfated N-acetylglucosamine (TSAG) shell served as artificial affinity reagent against vascular endothelial growth factor (VEGF) for angiogenesis inhibition. As to guarantee that these actions only happened in tumor, the hyaluronic acid (HA) corona was introduced to endow the nanocarrier with tumor targeting property and stimuli-responsiveness for accurate therapy. Both in vitro and in vivo results indicated that the CA4P/VK2-MSNs-TBAM/TSAG-HA (CVMMGH for short) nanocarrier combined well-controllable manipulation of tumor vasculature and tumor mitochondria to effectivly cut off the tumorigenic energy supply, which performed significant inhibition of tumor growth, demonstrating the great candidate of our strategy for effective tumor therapy.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qi Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kun Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Pingyun Yuan
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ran Tian
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yongkang Bai
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
2
|
Genabeek B, Lamers BAG, Hawker CJ, Meijer EW, Gutekunst WR, Schmidt BVKJ. Properties and applications of precision oligomer materials; where organic and polymer chemistry join forces. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200862] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bas Genabeek
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
| | - Brigitte A. G. Lamers
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
| | - Craig J. Hawker
- Materials Research Laboratory University of California Santa Barbara California USA
- Materials Department University of California Santa Barbara California USA
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
| | - Will R. Gutekunst
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia USA
| | - Bernhard V. K. J. Schmidt
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Potsdam Germany
- School of Chemisty University of Glasgow Glasgow UK
| |
Collapse
|