1
|
Ghosh P, Kundu A, Ganguly D. From experimental studies to computational approaches: recent trends in designing novel therapeutics for amyloidogenesis. J Mater Chem B 2025; 13:858-881. [PMID: 39664012 DOI: 10.1039/d4tb01890g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Amyloidosis is a condition marked by misfolded proteins that build up in tissues and eventually destroy organs. It has been connected to a number of fatal illnesses, including non-neuropathic and neurodegenerative conditions, which in turn have a significant influence on the worldwide health sector. The inability to identify the underlying etiology of amyloidosis has hampered efforts to find a treatment for the condition. Despite the identification of a multitude of putative pathogenic variables that may operate independently or in combination, the molecular mechanisms responsible for the development and progression of the disease remain unclear. A thorough investigation into protein aggregation and the impacts of toxic aggregated species will help to clarify the cytotoxicity of aggregation-mediated cellular apoptosis and lay the groundwork for future studies aimed at creating effective treatments and medications. This review article provides a thorough summary of the combination of various experimental and computational approaches to modulate amyloid aggregation. Further, an overview of the latest developments of novel therapeutic agents is given, along with a discussion of the possible obstacles and viewpoints on this developing field. We believe that the information provided by this review will help scientists create innovative treatment strategies that affect the way proteins aggregate.
Collapse
Affiliation(s)
- Pooja Ghosh
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata 700091, West Bengal, India.
| | - Agnibin Kundu
- Department of Medicine, District Hospital Howrah, 10, Biplabi Haren Ghosh Sarani Lane, Howrah 711101, West Bengal, India
| | - Debabani Ganguly
- Centre for Health Science & Technology, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata 700091, West Bengal, India.
| |
Collapse
|
2
|
Zheng Q, Duan Z, Zhang Y, Huang X, Xiong X, Zhang A, Chang K, Li Q. Conjugated Polymeric Materials in Biological Imaging and Cancer Therapy. Molecules 2023; 28:5091. [PMID: 37446753 DOI: 10.3390/molecules28135091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Conjugated polymers (CPs) have attracted much attention in the fields of chemistry, medicine, life science, and material science. Researchers have carried out a series of innovative researches and have made significant research progress regarding the unique photochemical and photophysical properties of CPs, expanding the application range of polymers. CPs are polymers formed by the conjugation of multiple repeating light-emitting units. Through precise control of their structure, functional molecules with different properties can be obtained. Fluorescence probes with different absorption and emission wavelengths can be obtained by changing the main chain structure. By modifying the side chain structure with water-soluble groups or selective recognition molecules, electrostatic interaction or specific binding with specific targets can be achieved; subsequently, the purpose of selective recognition can be achieved. This article reviews the research work of CPs in cell imaging, tumor diagnosis, and treatment in recent years, summarizes the latest progress in the application of CPs in imaging, tumor diagnosis, and treatment, and discusses the future development direction of CPs in cell imaging, tumor diagnosis, and treatment.
Collapse
Affiliation(s)
- Qinbin Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zhuli Duan
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ying Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xinqi Huang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xuefan Xiong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ang Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| | - Kaiwen Chang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiong Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| |
Collapse
|
3
|
Li B, Li N, Wang N, Li C, Liu X, Cao Z, Xing C, Wang S. Targeting ROS-sensitive TRP ion channels for relieving oxidative stress-related diseases based on nanomaterials. MATERIALS TODAY ADVANCES 2023; 17:100335. [DOI: 10.1016/j.mtadv.2022.100335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Poudel P, Park S. Recent Advances in the Treatment of Alzheimer's Disease Using Nanoparticle-Based Drug Delivery Systems. Pharmaceutics 2022; 14:835. [PMID: 35456671 PMCID: PMC9026997 DOI: 10.3390/pharmaceutics14040835] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder. Most existing treatments only provide symptomatic solutions. Here, we introduce currently available commercial drugs and new therapeutics, including repositioned drugs, to treat AD. Despite tremendous efforts, treatments targeting the hallmarks of AD show limited efficacy. Challenges in treating AD are partly caused by difficulties in penetrating the blood-brain barrier (BBB). Recently, nanoparticle (NP)-based systems have shown promising potential as precision medicines that can effectively penetrate the BBB and enhance the targeting ability of numerous drugs. Here, we describe how NPs enter the brain by crossing, avoiding, or disrupting the BBB. In addition, we provide an overview of the action of NPs in the microenvironment of the brain for the treatment of AD. Diverse systems, including liposomes, micelles, polymeric NPs, solid-lipid NPs, and inorganic NPs, have been investigated for NP drug loading to relieve AD symptoms, target AD hallmarks, and target moieties to diagnose AD. We also highlight NP-based immunotherapy, which has recently gained special attention as a potential treatment option to disrupt AD progression. Overall, this review focuses on recently investigated NP systems that represent innovative strategies to understand AD pathogenesis and suggests treatment and diagnostic modalities to cure AD.
Collapse
|
5
|
Kour A, Dube T, Kumar A, Panda JJ. Anti-Amyloidogenic and Fibril-Disaggregating Potency of the Levodopa-Functionalized Gold Nanoroses as Exemplified in a Diphenylalanine-Based Amyloid Model. Bioconjug Chem 2022; 33:397-410. [PMID: 35120290 DOI: 10.1021/acs.bioconjchem.2c00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The phenomenon of proteins/peptide assembly into amyloid fibrils is associated with various neurodegenerative and age-related human disorders. Inhibition of the aggregation behavior of amyloidogenic peptides/proteins or disruption of the pre-formed aggregates is a viable therapeutic option to control the progression of various protein aggregation-related disorders such as Alzheimer's disease (AD). In the current work, we investigated both the amyloid inhibition and disaggregation proclivity of levodopa-functionalized gold nanoroses (GNRs) against various peptide-based amyloid models, including the amyloid beta peptide [Aβ (1-42) and Aβ (1-40)] and the dipeptide phenylalanine-phenylalanine (FF). Our results depicted the anti-aggregation behavior of the GNR toward FF and both forms of Aβ-derived fibrils. The peptides demonstrated a variation in their fiber-like morphology and a decline in thioflavin T fluorescence after being co-incubated with the GNR. We further demonstrated the neuroprotective effects of the GNR in neuroblastoma cells against FF and Aβ (1-42) fiber-induced toxicity, exemplified both in terms of regaining cellular viability and reducing production of reactive oxygen species. Overall, these findings support the potency of the GNR as a promising platform for combating AD.
Collapse
Affiliation(s)
- Avneet Kour
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Taru Dube
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Ashwani Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| |
Collapse
|
6
|
Low KJY, Venkatraman A, Mehta JS, Pervushin K. Molecular mechanisms of amyloid disaggregation. J Adv Res 2022; 36:113-132. [PMID: 35127169 PMCID: PMC8799873 DOI: 10.1016/j.jare.2021.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/13/2021] [Accepted: 05/16/2021] [Indexed: 12/17/2022] Open
Abstract
Importance of disaggregation mechanism and innate disaggregation in living systems. Different types and mechanism of disaggregation reported in literature. Structural details of the interactions and the disaggregation mechanisms. Amyloid disaggregation in protein aggregation disorders as a potential treatment. Proposed amyloid disaggregation mechanism of an ATP-independent chaperone (L-PGDS).
Introduction Protein aggregation and deposition of uniformly arranged amyloid fibrils in the form of plaques or amorphous aggregates is characteristic of amyloid diseases. The accumulation and deposition of proteins result in toxicity and cause deleterious effects on affected individuals known as amyloidosis. There are about fifty different proteins and peptides involved in amyloidosis including neurodegenerative diseases and diseases affecting vital organs. Despite the strenuous effort to find a suitable treatment option for these amyloid disorders, very few compounds had made it to unsuccessful clinical trials. It has become a compelling challenge to understand and manage amyloidosis with the increased life expectancy and ageing population. Objective While most of the currently available literature and knowledge base focus on the amyloid inhibitory mechanism as a treatment option, it is equally important to organize and understand amyloid disaggregation strategies. Disaggregation strategies are important and crucial as they are present innately functional in many living systems and dissolution of preformed amyloids may provide a direct benefit in many pathological conditions. In this review, we have compiled the known amyloid disaggregation mechanism, interactions, and possibilities of using disaggregases as a treatment option for amyloidosis. Methods We have provided the structural details using protein-ligand docking models to visualize the interaction between these disaggregases with amyloid fibrils and their respective proposed amyloid disaggregation mechanisms. Results After reviewing and comparing the different amyloid disaggregase systems and their proposed mechanisms, we presented two different hypotheses for ATP independent disaggregases using L-PGDS as a model. Conclusion Finally, we have highlighted the importance of understanding the underlying disaggregation mechanisms used by these chaperones and organic compounds before the implementation of these disaggregases as a potential treatment option for amyloidosis.
Collapse
|
7
|
Bera A, Mukhopadhyay D, Goswami K, Ghosh P, De R, De P. Fatty Acid-Based Polymeric Micelles to Ameliorate Amyloidogenic Disorders. Biomater Sci 2022; 10:3466-3479. [PMID: 35670569 DOI: 10.1039/d2bm00359g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To develop anti-amyloidogenic inhibitors for ameliorating the treatment of diabetes, herein, we have synthesized amphiphilic block copolymers with side-chain fatty acid (FA) moieties via reversible addition fragmentation chain-transfer (RAFT) polymerization....
Collapse
Affiliation(s)
- Avisek Bera
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Debangana Mukhopadhyay
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Kalyan Goswami
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani, Basantapur, NH-34 connector, Kalyani - 741245, Nadia, West Bengal, India
| | - Pooja Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Rumi De
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| |
Collapse
|
8
|
Geng H, Gao D, Wang Z, Liu X, Cao Z, Xing C. Strategies for Inhibition and Disaggregation of Amyloid‐β Fibrillation. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hao Geng
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
| | - Dong Gao
- Key Laboratory of Hebei Province for Molecular, Biophysics Institute of Biophysics, School of Science Hebei University of Technology Tianjin 300130 China
| | - Zijuan Wang
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
| | - Xiaoning Liu
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
| | - Zhanshuo Cao
- College of Chemical Engineering Hebei University of Technology Tianjin 300130 China
| | - Chengfen Xing
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
- Key Laboratory of Hebei Province for Molecular, Biophysics Institute of Biophysics, School of Science Hebei University of Technology Tianjin 300130 China
| |
Collapse
|
9
|
Zhang Z, Yuan Q, Li M, Bao B, Tang Y. A Ratiometric Fluorescent Conjugated Oligomer for Amyloid β Recognition, Aggregation Inhibition, and Detoxification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104581. [PMID: 34708516 DOI: 10.1002/smll.202104581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The sensitive recognition and effective inhibition of toxic amyloid β protein (Aβ) aggregates play a critical role in early diagnosis and treatment of neurodegenerative diseases. In this work, a new conjugated oligo(fluorene-co-phenylene) (OFP) modified with 1,8-naphthalimide (NA) derivative OFP-NA-NO2 is designed and synthesized as a ratiometric fluorescence probe for sensing Aβ, inhibiting the assembly of Aβ, and detoxicating the cytotoxicity of Aβ aggregates. In the presence of Aβ, the active ester group on the side chain of OFP-NA-NO2 can covalently react with the amino group on Aβ, effectively inhibiting the formation of Aβ aggregates and degrading the preformed fibrils. In this case, the fluorescence intensity ratio of NA to OFP (INA /IOFP ) increases greatly. The detection limit is calculated to be 89.9 nM, presenting the most sensitive ratiometric recognition of Aβ. Interestingly, OFP-NA-NO2 can dramatically recover the cell viability of PC-12 and restore the Aβ-clearing ability of microglia. Therefore, this ratiometric probe exhibits the targeted recognition of Aβ, effective inhibition of Aβ aggregates, and detox effect, which is potential for early diagnosis and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziqi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Qiong Yuan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Meiqi Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Benkai Bao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
10
|
Biomaterials in treatment of Alzheimer's disease. Neurochem Int 2021; 145:105008. [PMID: 33684545 DOI: 10.1016/j.neuint.2021.105008] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a non-recoverable progressive neurodegenerative disorder most prevalent but not limited to the old age population. After all the scientific efforts, there are still many unmet criteria and loopholes in available treatment and diagnostic strategies, limiting their efficacy. The poor drug efficacy is attributed to various biological hurdles, including blood-brain barrier (BBB) and peripheral side effects as most prominent ones and the lack of promising carriers to precisely deliver the drug to the brain by conserving its therapeutic potency. The increasing disease prevalence and unavailability of effective therapy calls for developing a more innovative, convenient and affordable way to treat AD. To fulfill such need, researchers explored various biomaterials to develop potential vectors or other forms to target the bioactives in the brain by preserving their inherent properties, improving the existing lacuna like poor solubility, permeability and bioavailability etc. and minimize the side effect. The unique characteristic properties of biomaterials are used to develop different drug carriers, surface modifying target active ligands, functional carriers, drug conjugate, biosensing probe, diagnostic tool and many more. The nanoparticulate system and other colloidal carriers like hydrogel and biodegradable scaffold can effectively target the drug moieties to the brain. Also, the use of different target-acting ligands and stimuli-responsive carriers assures the site-specificity and controlled release at the desired site by interaction with receptors and various exo- and endogenous stimuli. This review article has highlighted the application of biomaterials for targeting the drug to the brain and as promising diagnostic tools to detect the markers for better AD management. The work particularly focuses on the use of biomaterials as smart drug carriers including pH, thermo, photo, electro and magnetically triggered system; novel drug carriers for brain targeting including polymeric carriers (polymeric nanoparticle, dendrimer and polymeric micelle); lipid carrier (liposome, nanoemulsion, NLC and SLN); inorganic nanoparticles (quantum dots, gold nanoparticles etc.); and other drug vectors (hydrogel, biodegradable scaffold, and carbon nanotube) in treatment of AD. It also highlighted the application of some novel carrier systems and biomaterials as biosensor and other diagnostic tools for early and precise AD diagnosis.
Collapse
|
11
|
Ghosh P, Bera A, De P. Current status, challenges and future directions in the treatment of neurodegenerative diseases by polymeric materials. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|