1
|
Abbasi A, Bhat ZUH, Khan S, Owais M, Shakir M. Unveiling the multifaceted applications of pamoic acid carbon dots (PACDs) in sensing and oncology. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124564. [PMID: 38824756 DOI: 10.1016/j.saa.2024.124564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
In our research we explore the world of PACDs, carbon dots synthesized from pamoic acid through a single step pyrolysis method. Our findings reveal that PACDs have capabilities of serving as sensitive and selective sensors in both colorimetric and fluorescent modes. They are particularly effective, at colorimetrically and fluorometrically detecting ferric ions and can also act as fluorometric sensors for pH. When ferric ions are introduced an interesting transformation occurs. A noticeable change in color unfolds before our eyes, under 365 nm UV light the fluorescence shifts from green to blue while in daylight it changes from a yellow to a deep ink blue. Notably these detection techniques can precisely measure ferric ions within concentrations ranging from 5 µM to 80 µM with a detection limit of 0.1 µM for fluorescence response. Additionally, they can detect ferric ions colorimetrically within the range of 5 µM to 45 µM with a detection limit of 3.8 µM. Furthermore, the PACDs exhibit a capability to adapt to different pH levels. In alkaline environments with a pH range between 8 and 11 the fluorescence signal demonstrates a response that directly correlates with pH levels and slightly shifts its position. In contrast under acidic conditions a noticeable shift, towards blue is observed in the fluorescence signal leading to a change in color from green to blue when exposed to UV light. This shift persists as the fluorescence signal directly correlates with decreasing pH levels in settings. Apart from their proficiency in ferric ion detection and pH monitoring, the PACDs also demonstrate potential in cancer research. Through an assessment using the MTT assay it was discovered that the PACDs exhibit cytotoxic effects against five different cancer cell lines; HCT 116, MDA MB 231, Hep3B, MCF 7 and HeLa. The findings are promising as the PACDs show IC50 values of 12.5 µg/ml 6.25 µg/ml 25 µg/ml 50 µg/ml and 100 µg/ml for these cell lines. This research highlights the versatility and potential of PACDs as a tool, in both sensing applications and oncology research.
Collapse
Affiliation(s)
- Ambreen Abbasi
- Division of Inorganic Chemistry, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Zia Ul Haq Bhat
- Division of Inorganic Chemistry, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Shamiuddin Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Shakir
- Division of Inorganic Chemistry, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
2
|
Wu W, Hu Z, Shi C, Xu R, Zhao Y, Ding Y. Construction of CdTe@γ-CD@RBD nanoprobe for Fe 3+-sensing based on FRET mechanism in human serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122645. [PMID: 37011440 DOI: 10.1016/j.saa.2023.122645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
A Fe3+ optical sensor (CdTe@γ-CD@RBD) has been developed by using gamma-cyclodextrin (γ-CD) as a bridge to link CdTe quantum dots (QDs) and a Rhodamine B derivative (RBD). The RBD molecule can enter the cavity of the γ-CD anchored onto the surfaces of the QDs. In the presence of Fe3+, the fluorescence resonance energy transfer (FRET) process from QDs to RBD will be initiated, rendering the nanoprobe to display a response to Fe3+. The degree of fluorescence quenching presented a satisfactory linearity between 10 and 60 μΜ with the incremental concentrations of Fe3+, and the calculated limit of detection was 2.51 μΜ. Through sample pretreatment procedures, the probe has been used in the determination of Fe3+ in human serum. The average recoveries in the spiking levels are ranged from 98.60 % to 107.20 % with a relative standard deviation of around 1.43 %-2.96 %. This finding leads to a method for fluorescent detection of Fe3+ with high sensitivity and exceptional selectivity. We believe that this study can give a new insight into the rational design and application of FRET-based nanoprobes.
Collapse
Affiliation(s)
- Wenlu Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Zhongfei Hu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Cai Shi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Ruoqian Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Yiming Zhao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Yujie Ding
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China.
| |
Collapse
|
3
|
Shi Y, Zhang W, Xue Y, Zhang J. Fluorescent Sensors for Detecting and Imaging Metal Ions in Biological Systems: Recent Advances and Future Perspectives. CHEMOSENSORS 2023; 11:226. [DOI: 10.3390/chemosensors11040226] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Metal ions play a crucial role in many biochemical processes, and when in a state of scarcity or surplus, they can lead to various diseases. Therefore, the development of a selective, sensitive, cost-effective, and fast-responding sensor to detect metal ions is critical for in vitro medical diagnostics. In recent years, fluorescent sensors have been extensively investigated as potent kits for the effective assessment of metal ions in living systems due to their high sensitivity, selectivity, ability to perform real-time, non-invasive monitoring, and versatility. This review is an overview of recent advances in fluorescent sensors for the detection and imaging of metal ions in biosystems from 2018 to date. Specifically, we discuss their application in detecting essential metal ions and non-essential metal ions for in vitro diagnostics, living cell imaging, and in vivo imaging. Finally, we summarize remaining challenges and offer a future outlook on the above topics.
Collapse
Affiliation(s)
- Yang Shi
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenxian Zhang
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Xue
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingjing Zhang
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Yu W, Li Q, He L, Zhou R, Liao L, Xue J, Xiao X. Green synthesis of CQDs for determination of iron and isoniazid in pharmaceutical formulations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:944-950. [PMID: 36723197 DOI: 10.1039/d2ay01793h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Camphor leaves were used as the precursor for the hydrothermal synthesis of carbon quantum dots. The preparation method is simple and rapid, and the raw material is environmentally friendly and easy to obtain. Without additional modification, the carbon quantum dots were used as fluorescent probes for the sensitive and selective detection of Fe3+ and isoniazid at different excitation wavelengths. For Fe3+, at the excitation wavelength of 320 nm, the ratio of fluorescence intensity of CQD solution after adding Fe3+ to CQD solution without Fe3+ addition, F/F0, and Fe3+ concentration showed a good linear relationship in the range of 2.72 × 10-5 to 1.00 × 10-4 mol L-1 (R2 = 0.9912), and the limit of detection was 8.16 μmol L-1. For isoniazid, at the excitation wavelength of 270 nm, the ratio of fluorescence intensity of CQDs solution with isoniazid to CQDs solution without isoniazid, F/F0, and isoniazid concentration showed good linear relationships in the range of 3.81 × 10-6 to 1.00 × 10-5 mol L-1 (R2 = 0.9941) and 1.00 × 10-5 to 2.10 × 10-4 mol L-1 (R2 = 0.9910) respectively, and the limit of detection was 1.14 μmol L-1. A fluorescence method for the determination of Fe and isoniazid content was proposed. The method has been used to detect iron in iron supplement tablets and isoniazid in isoniazid tablets with satisfactory results.
Collapse
Affiliation(s)
- Wenzhan Yu
- School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, PR China
| | - Qian Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, PR China
| | - Liqiong He
- School of Public Health, University of South China, Hengyang 421001, Hunan, PR China.
| | - Renlong Zhou
- School of Public Health, University of South China, Hengyang 421001, Hunan, PR China.
| | - Lifu Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, PR China
| | - Jinhua Xue
- School of Public Health, University of South China, Hengyang 421001, Hunan, PR China.
| | - Xilin Xiao
- School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, PR China
| |
Collapse
|
5
|
Li Z, Hou JT, Wang S, Zhu L, He X, Shen J. Recent advances of luminescent sensors for iron and copper: Platforms, mechanisms, and bio-applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
6
|
Zhang M, He S, Pang W, Wei W, Zhou F, Wu X, Qi H, Duan X, Wang Y. On chip manipulation of carbon dots via gigahertz acoustic streaming for enhanced bioimaging and biosensing. Talanta 2022; 245:123462. [DOI: 10.1016/j.talanta.2022.123462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
7
|
Su R, Yan H, Jiang X, Zhang Y, Li P, Su W. Orange-red to NIR emissive carbon dots for antimicrobial, bioimaging and bacteria diagnosis. J Mater Chem B 2022; 10:1250-1264. [PMID: 35128551 DOI: 10.1039/d1tb02457d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a popular technology for the treatment of bacterial infections. The development of antimicrobial agents combining diagnosis and treatment remains a major challenge. Herein, curcumin carbon quantum dots (Cur-NRCQDs) with antibacterial and imaging effects were synthesized using a hydrothermal method. The fluorescence absorption range of the Cur-NRCQDs in aqueous solution was 555 to 850 nm, showing orange-red to near infrared (NIR) fluorescence, and its maximum emission wavelength was 635 nm. At the same time, Cur-NRCQDs improved the efficiency of Cur as the photosensitizer (PS), showed good storage and light stability, and enhanced the efficiency of reactive oxygen (ROS) generation and antibacterial activity. Under the irradiation of a xenon lamp, Cur-NRCQDs inactivated 100% Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) at concentrations of 10 and 15 μM, respectively. The possible reason for this was that under PDT, the ROS produced by the Cur-NRCQDs destroyed the integrity of the cell membrane, resulting in leakage of the contents. In addition, the Cur-NRCQDs showed good cell compatibility, as they can also enter bacteria and cells for imaging, so they can be employed for the detection of bacteria and cell tissues. Therefore, Cur-NRCQDs are an ideal candidate material for aPDT treatment and fluorescent bioimaging.
Collapse
Affiliation(s)
- Rixiang Su
- College of Pharmacy, Guangxi Key Laborary of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China.
| | - Hongjun Yan
- College of Pharmacy, Guangxi Key Laborary of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China.
| | - Xiantao Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Ying Zhang
- College of Pharmacy, Guangxi Key Laborary of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China.
| | - Peiyuan Li
- College of Pharmacy, Guangxi Key Laborary of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China.
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| |
Collapse
|
8
|
Lin S, Dong J, Zhang B, Yuan Z, Lu C, Han P, Xu J, Jia L, Wang L. Synthesis of bifunctional fluorescent nanohybrids of carbon dots-copper nanoclusters via a facile method for Fe 3+ and Tb 3+ ratiometric detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3577-3584. [PMID: 34291249 DOI: 10.1039/d1ay00762a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, a dual-emission ratiometric fluorescent probe of carbon dots-copper nanoclusters (CDs-Cu NCs) nanohybrids with bifunctional features was successfully assembled through mechanical mixing. The CDs were synthesized using ascorbic acid as a carbon source, and Cu NCs were prepared using d-penicillamine as the stabilizer and reducing agent. The as-prepared CDs-Cu NCs displayed two emission peaks (blue at 424 nm and red at 624 nm) when excited at 360 nm, and showed great stability. Interestingly, trace amount of Fe3+ could lead to the aggregation of Cu NCs, and induce a drastic static fluorescence quenching at 624 nm because of the electrostatic combination between them, while the fluorescence of the emission peak at 424 nm remained constant. Moreover, an attractive fluorescence enhancement phenomenon at 424 nm was observed when trace Tb3+ was added to the above system, which may due to the combination of fluorescence resonance energy transfer (FRET) and photo-induced electron transfer (PET) mechanisms. Thus, CDs-Cu NCs were applied for the ratiometric detection of Fe3+ and Tb3+ in aqueous solution, and the detection limit (3σ/slope) was 45 nM and 62 nM with the linear range from 0.01 to 40 μM and 0.1 to 50 μM, respectively. Furthermore, the developed sensor was successfully applied for the detection of Fe3+ and Tb3+ in real-water samples.
Collapse
Affiliation(s)
- Shumin Lin
- Analysis and Testing Center, Inner Mongolia University of Science and Technology, Baotou, 014010, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|