1
|
Miranda-Vera C, Hernández ÁP, García-García P, Díez D, García PA, Castro MÁ. Bioconjugation of Podophyllotoxin and Nanosystems: Approaches for Boosting Its Biopharmaceutical and Antitumoral Profile. Pharmaceuticals (Basel) 2025; 18:169. [PMID: 40005983 PMCID: PMC11859694 DOI: 10.3390/ph18020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Podophyllotoxin is a natural compound belonging to the lignan family and is well-known for its great antitumor activity. However, it shows several limitations, such as severe side effects and some pharmacokinetics problems, including low water solubility, which hinders its application as an anticancer agent. Over the past few years, antitumor research has been focused on developing nanotechnology-based medicines or nanomedicines which allow researchers to improve the pharmacokinetic properties of anticancer compounds. Following this trend, podophyllotoxin nanoconjugates have been obtained to overcome its biopharmaceutical drawbacks and to enhance its antitumor properties. The objective of this review is to highlight the advances made over the past few years (2017-2023) regarding the inclusion of podophyllotoxin in different nanosystems. Among the huge variety of nanoconjugates of diverse nature, drug delivery systems bearing podophyllotoxin as cytotoxic payload are organic nanoparticles mainly based on polymer carriers, micelles, and liposomes. Along with the description of their pharmacological properties as antitumorals and the advantages compared to the free drug in terms of biocompatibility, solubility, and selectivity, we also provide insight into the synthetic procedures developed to obtain those podophyllotoxin-nanocarriers. Typical procedures in this regard are self-assembly techniques, nanoprecipitations, or ionic gelation methods among others. This comprehensive perspective aims to enlighten the medicinal chemistry community about the tendencies followed in the design of new podophyllotoxin-based drug delivery systems, their features and applications.
Collapse
Affiliation(s)
- Carolina Miranda-Vera
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.-P.H.); (P.G.-G.); (P.A.G.)
| | - Ángela-Patricia Hernández
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.-P.H.); (P.G.-G.); (P.A.G.)
| | - Pilar García-García
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.-P.H.); (P.G.-G.); (P.A.G.)
| | - David Díez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Pablo A. García
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.-P.H.); (P.G.-G.); (P.A.G.)
| | - María Ángeles Castro
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.-P.H.); (P.G.-G.); (P.A.G.)
| |
Collapse
|
2
|
Patra P, Upadhyay TK, Alshammari N, Saeed M, Kesari KK. Alginate-Chitosan Biodegradable and Biocompatible Based Hydrogel for Breast Cancer Immunotherapy and Diagnosis: A Comprehensive Review. ACS APPLIED BIO MATERIALS 2024; 7:3515-3534. [PMID: 38787337 PMCID: PMC11190989 DOI: 10.1021/acsabm.3c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 05/25/2024]
Abstract
Breast cancer is the most common type of cancer and the second leading cause of cancer-related mortality in females. There are many side effects due to chemotherapy and traditional surgery, like fatigue, loss of appetite, skin irritation, and drug resistance to cancer cells. Immunotherapy has become a hopeful approach toward cancer treatment, generating long-lasting immune responses in malignant tumor patients. Recently, hydrogel has received more attention toward cancer therapy due to its specific characteristics, such as decreased toxicity, fewer side effects, and better biocompatibility drug delivery to the particular tumor location. Researchers globally reported various investigations on hydrogel research for tumor diagnosis. The hydrogel-based multilayer platform with controlled nanostructure has received more attention for its antitumor effect. Chitosan and alginate play a leading role in the formation of the cross-link in a hydrogel. Also, they help in the stability of the hydrogel. This review discusses the properties, preparation, biocompatibility, and bioavailability of various research and clinical approaches of the multipolymer hydrogel made of alginate and chitosan for breast cancer treatment. With a focus on cases of breast cancer and the recovery rate, there is a need to find out the role of hydrogel in drug delivery for breast cancer treatment.
Collapse
Affiliation(s)
- Pratikshya Patra
- Department
of Biotechnology, Parul Institute of Applied Sciences and Animal Cell
Culture and Immunobiochemistry Lab, Research and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Tarun Kumar Upadhyay
- Department
of Biotechnology, Parul Institute of Applied Sciences and Animal Cell
Culture and Immunobiochemistry Lab, Research and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Nawaf Alshammari
- Department
of Biology, College of Science, University
of Hail, Hail 53962, Saudi Arabia
| | - Mohd Saeed
- Department
of Biology, College of Science, University
of Hail, Hail 53962, Saudi Arabia
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, Espoo FI-00076, Finland
- Centre
of Research Impact and Outcome, Chitkara
University, Rajpura 140417, Punjab, India
| |
Collapse
|
3
|
Hu C, Wei H, Chen H, Zhang B, Zhang W, Wang G, Guo T. Facile fabrication of temperature/pH dual sensitive hydrogels based on cellulose and polysuccinimide through aqueous amino-succinimide reaction. Int J Biol Macromol 2024; 267:131543. [PMID: 38614169 DOI: 10.1016/j.ijbiomac.2024.131543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
A temperature/pH dual sensitive hydrogel with a semi-interpenetrating network (semi-IPN) structure was synthesized through an aqueous amino-succinimide reaction between water-soluble polysuccinimide and polyethyleneimine in the presence of thermosensitive cellulose derivatives. Single-factor experiments were carried out to optimize the preparation conditions of the semi-IPN hydrogel. The swelling behavior and cytotoxicity assay of the hydrogel were tested. Finally, taking 5- fluorouracil (5-Fu) as a model drug, the release performance of the 5-Fu-loaded hydrogel was investigated. The results indicated that the swelling ratio (SR) first decreased and then increased when the pH of the solutions ascended from 2 to 10. The SR decreased with the increase in temperature. In addition, the swelling behavior of the hydrogel was reversible and reproducible under different pH values and temperatures. The prepared hydrogels had good cytocompatibility. The release behavior of 5-Fu was most consistent with the Korsmeyer-Peppas model and followed the case II diffusion. The acidic environment was beneficial for the release of 5-Fu. The preparation process of the semi-IPN hydrogel is simple and the reaction can proceed quickly in water. The strategy introduced here has great potential for application in the preparation of drug carriers.
Collapse
Affiliation(s)
- Chunwang Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China.
| | - Hongli Chen
- The Third Hospital of Xinxiang Medical University, Xinxiang, PR China.
| | - Bing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Wenjing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| |
Collapse
|
4
|
Hao M, Xu H. Chemistry and Biology of Podophyllotoxins: An Update. Chemistry 2024; 30:e202302595. [PMID: 37814110 DOI: 10.1002/chem.202302595] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Podophyllotoxin is an aryltetralin lignan lactone derived from different plants of Podophyllum. It consists of five rings with four chiral centers, one trans-lactone and one aryl tetrahydronaphthalene skeleton with multiple modification sites. Moreover, podophyllotoxin and its derivatives showed lots of bioactivities, including anticancer, anti-inflammatory, antiviral, and insecticidal properties. The demand for podophyllotoxin and its derivatives is rising as a result of their high efficacy. As a continuation of our previous review (Chem. Eur. J., 2017, 23, 4467-4526), herein, total synthesis, biotransformation, structural modifications, bioactivities, and structure-activity relationships of podophyllotoxin and its derivatives from 2017 to 2022 are summarized. Meanwhile, a piece of update information on the origin of new podophyllotoxin analogues from plants from 2014 to 2022 was compiled. We hope that this review will provide a reference for future high value-added applications of podophyllotoxin and its analogues in the pharmaceutical and agricultural fields.
Collapse
Affiliation(s)
- Meng Hao
- College of Plant Protection, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P.R. China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P.R. China
| |
Collapse
|
5
|
Zhao Y, Zheng Z, Yu CY, Wei H. Engineered cyclodextrin-based supramolecular hydrogels for biomedical applications. J Mater Chem B 2023; 12:39-63. [PMID: 38078497 DOI: 10.1039/d3tb02101g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cyclodextrin (CD)-based supramolecular hydrogels are polymer network systems with the ability to rapidly form reversible three-dimensional porous structures through multiple cross-linking methods, offering potential applications in drug delivery. Although CD-based supramolecular hydrogels have been increasingly used in a wide range of applications in recent years, a comprehensive description of their structure, mechanical property modulation, drug loading, delivery, and applications in biomedical fields from a cross-linking perspective is lacking. To provide a comprehensive overview of CD-based supramolecular hydrogels, this review systematically describes their design, regulation of mechanical properties, modes of drug loading and release, and their roles in various biomedical fields, particularly oncology, wound dressing, bone repair, and myocardial tissue engineering. Additionally, this review provides a rational discussion on the current challenges and prospects of CD-based supramolecular hydrogels, which can provide ideas for the rapid development of CD-based hydrogels and foster their translation from the laboratory to clinical medicine.
Collapse
Affiliation(s)
- Yuqi Zhao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| |
Collapse
|
6
|
Dong A, Huang S, Qian Z, Xu S, Yuan W, Wang B. A pH-responsive supramolecular hydrogel encapsulating a CuMnS nanoenzyme catalyst for synergistic photothermal-photodynamic-chemodynamic therapy of tumours. J Mater Chem B 2023; 11:10883-10895. [PMID: 37917009 DOI: 10.1039/d3tb01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Traditional cancer therapies no longer meet the current demand for cancer precision therapy and personalized treatment and it's essential to develop new therapeutic modalities as well as to investigate new combination anti-tumor mechanisms. Therefore, amphiphilic prodrug polymer chains linking methoxy poly(ethylene glycol) (mPEG) and cinnamaldehyde (CA) with adipic acid dihydrazide (ADH) as the pH-responsive center were designed and synthesized, which could self-assemble into PAC micelles in aqueous solution. A supramolecular hydrogel was formed based on the host-guest interaction between α-cyclodextrin (α-CD) and PAC micelles. Polyetherimide (PEI) modified copper manganese sulfide nanoenzyme catalysts (PCMS NPs) were prepared by a solvothermal method, which could be uniformly dispersed in the hydrogel to form a composite supramolecular hydrogel (PCMS@PAC/α-CD Gel). Under an acidic tumor environment, pH-responsive hydrazone bonds were broken, resulting in the slow release of CA and the amplification of hydrogen peroxide (H2O2) levels. PCMS NPs exerted peroxidase (POD)-like activity and catalase (CAT)-like activity, which could convert H2O2 into hydroxyl radicals (˙OH) and oxygen (O2) to alleviate intra-tumor hypoxia and induce apoptosis, while exerting glutathione oxidase (GPX)-like activity to consume glutathione (GSH) to further enhance the effect of chemodynamic therapy (CDT). Under near-infrared light (NIR) irradiation, PCMS NPs exhibited an excellent photothermal conversion performance, which could rapidly increase the temperature of tumor cells to above 42 °C for photothermal therapy (PTT) and convert O2 to a superoxide anion (˙O2-) by exerting oxidase (OXD)-like activity for photodynamic therapy (PDT). It was demonstrated by in vitro and in vivo experiments that the PCMS@PAC/α-CD Gel was highly cytotoxic to cancer cells and could effectively inhibit tumor growth, indicating the potential for applications in the fields of biomedicine and smart materials.
Collapse
Affiliation(s)
- Anqin Dong
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Shiwei Huang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China.
| | - Zhiyi Qian
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China.
| | - Sicheng Xu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China.
| | - Weizhong Yuan
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China.
| | - Bing Wang
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| |
Collapse
|
7
|
Wang D, Wang W, Wang P, Wang C, Niu J, Liu Y, Chen Y. Research progress of colon-targeted oral hydrogel system based on natural polysaccharides. Int J Pharm 2023; 643:123222. [PMID: 37454829 DOI: 10.1016/j.ijpharm.2023.123222] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
The quality of life is significantly impacted by colon-related diseases. There have been a lot of interest in the oral colon-specific drug delivery system (OCDDS) as a potential carrier to decrease systemic side effects and protect drugs from degradation in the upper gastrointestinal tract (GIT). Hydrogels are effective oral colon-targeted drug delivery carriers due to their high biodegradability, substantial drug loading, and great biocompatibility. Natural polysaccharides give the hydrogel system unique structure and function to effectively respond to the complex environment of the GIT and deliver drugs to the colon. In this paper, the physiological factors of colonic drug delivery and the pathological characteristics of common colonic diseases are summarized, and the latest advances in the design, preparation and characterization of natural polysaccharide hydrogels are reviewed, which are expected to provide new references for colon-targeted oral hydrogel systems using natural polysaccharides as raw materials.
Collapse
Affiliation(s)
- Dingding Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weibo Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ping Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuang Wang
- Shenyang Pharmaceutical University, Shenyang, China
| | - Juntao Niu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Hospital, Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
8
|
Bhadran A, Shah T, Babanyinah GK, Polara H, Taslimy S, Biewer MC, Stefan MC. Recent Advances in Polycaprolactones for Anticancer Drug Delivery. Pharmaceutics 2023; 15:1977. [PMID: 37514163 PMCID: PMC10385458 DOI: 10.3390/pharmaceutics15071977] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Poly(ε-Caprolactone)s are biodegradable and biocompatible polyesters that have gained considerable attention for drug delivery applications due to their slow degradation and ease of functionalization. One of the significant advantages of polycaprolactone is its ability to attach various functionalities to its backbone, which is commonly accomplished through ring-opening polymerization (ROP) of functionalized caprolactone monomer. In this review, we aim to summarize some of the most recent advances in polycaprolactones and their potential application in drug delivery. We will discuss different types of polycaprolactone-based drug delivery systems and their behavior in response to different stimuli, their ability to target specific locations, morphology, as well as their drug loading and release capabilities.
Collapse
Affiliation(s)
- Abhi Bhadran
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Tejas Shah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Godwin K Babanyinah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Somayeh Taslimy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
9
|
Hazarika B, Singh VP. Macrocyclic supramolecular biomaterials in anti-cancer therapeutics. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Yang DC, Wen LF, Du L, Luo CM, Lu ZY, Liu JY, Lin Z. A Hypoxia-Activated Prodrug Conjugated with a BODIPY-Based Photothermal Agent for Imaging-Guided Chemo-Photothermal Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40546-40558. [PMID: 36059107 DOI: 10.1021/acsami.2c09071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hypoxia-activated prodrugs (HAPs) have drawn increasing attention for improving the antitumor effects while minimizing side effects. However, the heterogeneous distribution of the hypoxic region in tumors severely impedes the curative effect of HAPs. Additionally, most HAPs are not amenable to optical imaging, and it is difficult to precisely trace them in tissues. Herein, we carefully designed and synthesized a multifunctional therapeutic BAC prodrug by connecting the chemotherapeutic drug camptothecin (CPT) and the fluorescent photothermal agent boron dipyrromethene (BODIPY) via hypoxia-responsive azobenzene linkers. To enhance the solubility and tumor accumulation, the prepared BAC was further encapsulated into a human serum albumin (HSA)-based drug delivery system to form HSA@BAC nanoparticles. Since the CPT was caged by a BODIPY-based molecule at the active site, the BAC exhibited excellent biosafety. Importantly, the activated CPT could be quickly released from BAC and could perform chemotherapy in hypoxic cancer cells, which was ascribed to the cleavage of the azobenzene linker by overexpressed azoreductase. After irradiation with a 730 nm laser, HSA@BAC can efficiently generate hyperthermia to achieve irreversible cancer cell death by oxygen-independent photothermal therapy. Under fluorescence imaging-guided local irradiation, both in vitro and in vivo studies demonstrated that HSA@BAC exhibited superior antitumor effects with minimal side effects.
Collapse
Affiliation(s)
- De-Chao Yang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lin-Feng Wen
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Liyang Du
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cheng-Miao Luo
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zi-Yao Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jian-Yong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhonghui Lin
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
11
|
Fu XK, Cao HB, An YL, Zhou HD, Shi YP, Hou GL, Ha W. Bioinspired Hydroxyapatite Coating Infiltrated with a Graphene Oxide Hybrid Supramolecular Hydrogel Orchestrates Antibacterial and Self-Lubricating Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31702-31714. [PMID: 35796026 DOI: 10.1021/acsami.2c07869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HA) bioceramic coating has been extensively applied for the modification of metallic implants to improve their biocompatibility and service life after implantation. Unfortunately, HA coating often suffers from high friction, severe wear, and bacterial invasion, which restrict its application in artificial joints. According to a bioinspired soft/hard combination strategy, a novel HA composite coating that is infiltrated with a vancomycin-loaded graphene oxide (GO) hybrid supramolecular hydrogel is developed via vacuum infiltration and a subsequent host-guest interaction-induced self-assembly process. The holes of textured HA ceramic coating act just like a "magic pocket", offering a stable container to form and store GO hybrid hydrogels and even to recycle wear debris as well. The drug-loaded hybrid hydrogels stored in textured HA coating possess a unique shear force and/or frictional heat triggered gel-sol transition and sustained drug release behavior, acting like the extrusion of synovial fluid during articular cartilage movement, leading to a remarkable self-lubrication, anti-wear performance, and promising antibacterial property against Staphylococcus aureus. The friction coefficient and wear rate of composite coating reduced by nearly five times and three orders of magnitude compared with textured HA coating, respectively, which benefited from the synergistic lubricate effect of cyclodextrin-based pseudopolyrotaxane supramolecular hydrogel and GO lubricants.
Collapse
Affiliation(s)
- Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao-Bo Cao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu-Long An
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Hui-Di Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Guo-Liang Hou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| |
Collapse
|
12
|
Yang R, Jin W, Huang C, Liu Y. Azobenzene Based Photo-Responsive Hydrogel: Synthesis, Self-Assembly, and Antimicrobial Activity. Gels 2022; 8:gels8070414. [PMID: 35877499 PMCID: PMC9316089 DOI: 10.3390/gels8070414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
A new azobenzene-based symmetric amphiphile was synthesized and characterized using 1H NMR spectroscopy. Its self-assembly behavior as well as photo-responsive behavior in its solution and gel states were investigated. Such a compound can self-assemble into fiber mesophases in water solvent. After irradiation of the gels with UV light, the trans isomer of the compound rapidly photoisomerized to the cis isomer, which resulted in a rapid destruction of the gel. High temperature also caused a rapid drop in viscosity. To verify the antimicrobial activity of the hydrogel, live and death assays of human fibroblasts L929 properties were used for in vitro cell viability studies. The compound was converted to the terminal tertiary amine in a quaternary ammonium salt molecule by using hydrochloric acid. This azobenzene quaternary ammonium salt has a relatively better antimicrobial effect biocidal activity that was demonstrated when challenged against Escherichia coli on in vitro conditions.
Collapse
Affiliation(s)
- Runmiao Yang
- Department of Material Engineering, Jiangsu University of Technology, Changzhou 213001, China; (W.J.); (Y.L.)
- PARSD Biomedical Material Research Center, Changzhou 213001, China;
- Correspondence: ; Tel.: +86-0519-86953292
| | - Wei Jin
- Department of Material Engineering, Jiangsu University of Technology, Changzhou 213001, China; (W.J.); (Y.L.)
| | - Chingcheng Huang
- PARSD Biomedical Material Research Center, Changzhou 213001, China;
- Department of Biomedical Engineering, Ming-Chuan University, Taoyuan 333, Taiwan
| | - Yuhai Liu
- Department of Material Engineering, Jiangsu University of Technology, Changzhou 213001, China; (W.J.); (Y.L.)
- PARSD Biomedical Material Research Center, Changzhou 213001, China;
| |
Collapse
|
13
|
Wang R, Zhao Y, Huang Z, Zhou Y, Wang W, Xuan Y, Zhen Y, Ju B, Guo S, Zhang S. Self-Assembly of Podophyllotoxin-Loaded Lipid Bilayer Nanoparticles for Highly Effective Chemotherapy and Immunotherapy via Downregulation of Programmed Cell Death Ligand 1 Production. ACS NANO 2022; 16:3943-3954. [PMID: 35166522 DOI: 10.1021/acsnano.1c09391] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Low drug delivery efficiency elevates the cost of medication, lowers the therapeutic efficacy, and appears as a leading reason for unmet needs in anticancer therapies. Herein, we report the development of self-assembled podophyllotoxin-loaded lipid bilayer nanoparticles that inhibit the production of programmed cell death ligand 1 in lung cancer cells and promote tumor-specific immune responses, thus offering a strategy for regulating the immunosuppressive microenvironment of tumors. In addition, encapsulation of podophyllotoxin in the nanoparticles reduced its systemic toxicity, enhanced its penetration into tumors, and increased its antitumor efficacy. Systemic injection of the nanoparticles into tumor-bearing mice not only prevented tumor immune escape but also significantly inhibited tumor growth and extended survival. In general, the podophyllotoxin-loaded nanoparticles exhibited both immunological effects and antitumor effects in addition to having better targeting activity and fewer side effects than free podophyllotoxin. We expect our findings to facilitate the development of therapies for lung cancer.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Zhenlong Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yaxin Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education and State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education and State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
14
|
Bildziukevich U, Özdemir Z, Šaman D, Vlk M, Šlouf M, Rárová L, Wimmer Z. Novel cytotoxic 1,10-phenanthroline–triterpenoid amphiphiles with supramolecular characteristics capable of coordinating 64Cu( ii) labels. Org Biomol Chem 2022; 20:8157-8163. [DOI: 10.1039/d2ob01172g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Novel 1,10-phenanthroline–triterpenoid amphiphiles formed nano-assemblies in water, coordinated Cu(ii) and 64Cu(ii) salts for potential cancer monitoring and therapy, and displayed cytotoxicity partly dependent on the formation of nano-assemblies.
Collapse
Affiliation(s)
- Uladzimir Bildziukevich
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Zulal Özdemir
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, CZ-16610 Prague 6, Czech Republic
| | - Martin Vlk
- Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, CZ-11519 Prague 1, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq. 2, CZ-16206 Prague 6, Czech Republic
| | - Lucie Rárová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Zdeněk Wimmer
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
- University of Chemistry and Technology in Prague, Department of Chemistry of Natural Compounds, Technická 5, CZ-16628 Prague 6, Czech Republic
| |
Collapse
|
15
|
Ha W, Hou GL, Qin WJ, Fu XK, Zhao XQ, Wei XD, An YL, Shi YP. Supramolecular hydrogel-infiltrated ceramics composite coating with combined antibacterial and self-lubricating performance. J Mater Chem B 2021; 9:9852-9862. [PMID: 34704586 DOI: 10.1039/d1tb01830b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inspired by the structure and dynamic weeping lubricating mechanism of articular cartilage, a novel composite coating composed of a textured Y2O3-stabilized ZrO2 (YSZ) ceramics reservoir and silver nanoparticles (AgNPs) hybrid supramolecular hydrogel was developed on the basis of a soft/hard combination strategy. The precursor solution including the poly(ethylene glycol) (PEG)-modified AgNPs and α-cyclodextrins (α-CDs) could be infiltrated deep into (50-60 μm) the pores of a textured YSZ ceramics substrate by a vacuum infiltration method, in situ forming a supramolecular hydrogel within the pores through host-guest inclusion between α-CDs and PEG chains distributed onto the surface of AgNPs. The AgNPs hybrid hydrogel showed thixotropic and thermoresponsive gel-sol transition behavior, low cytotoxicity, and excellent drug-loading capacity, as well as significant antibacterial properties. The textured YSZ ceramics not only provided a hard supporting skeleton and stable reservoir to protect the supramolecular hydrogel from destruction under load-bearing or shear condition, but also allowed retaining the stimuli-responsive gel-sol transition property and drug-release capability of the infiltrated hydrogel, endowing the composite coating with excellent antibacterial properties, and self-lubrication and wear-resistance performance. The composite coating in this work brings a new insight into the design of antibacterial and self-lubricating ceramic coatings for artificial joint applications.
Collapse
Affiliation(s)
- Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Guo-Liang Hou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Wu-Jun Qin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Xiao-Qin Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Xiao-Dong Wei
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Yu-Long An
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| |
Collapse
|
16
|
Bildziukevich U, Kvasnicová M, Šaman D, Rárová L, Wimmer Z. Novel Oleanolic Acid-Tryptamine and -Fluorotryptamine Amides: From Adaptogens to Agents Targeting In Vitro Cell Apoptosis. PLANTS 2021; 10:plants10102082. [PMID: 34685891 PMCID: PMC8540097 DOI: 10.3390/plants10102082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/29/2022]
Abstract
Background: Oleanolic acid is a natural plant adaptogen, and tryptamine is a natural psychoactive drug. To compare their effects of with the effect of their derivatives, tryptamine and fluorotryptamine amides of oleanolic acid were designed and synthesized. Methods: The target amides were investigated for their pharmacological effect, and basic supramolecular self-assembly characteristics. Four human cancer cell lines were involved in the screening tests performed by standard methods. Results: The ability to display cytotoxicity and to cause selective cell apoptosis in human cervical carcinoma and in human malignant melanoma was seen with the three most active compounds of the prepared series of compounds. Tryptamine amide of (3β)-3-(acetyloxy)olean-12-en-28-oic acid (3a) exhibited cytotoxicity in HeLa cancer cell lines (IC50 = 8.7 ± 0.4 µM) and in G-361 cancer cell lines (IC50 = 9.0 ± 0.4 µM). Fluorotryptamine amides of (3β)-3-(acetyloxy)olean-12-en-28-oic acid (compounds 3b and 3c) showed cytotoxicity in the HeLa cancer cell line (IC50 = 6.7 ± 0.4 µM and 12.2 ± 4.7 µM, respectively). The fluorotryptamine amide of oleanolic acid (compound 4c) displayed cytotoxicity in the MCF7 cancer cell line (IC50 = 13.5 ± 3.3 µM). Based on the preliminary UV spectra measured in methanol/water mixtures, the compounds 3a–3c were also found to self-assemble into supramolecular systems. Conclusions: An effect of the fluorine atom present in the molecules on self-assembly was observed with 3b. Enhanced cytotoxicity has been achieved in 3a–4c in comparison with the effect of the parent oleanolic acid (1) and tryptamine. The compounds 3a–3c showed a strong induction of apoptosis in HeLa and G-361 cells after 24 h.
Collapse
Affiliation(s)
- Uladzimir Bildziukevich
- Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic;
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, CZ-16628 Prague, Czech Republic
| | - Marie Kvasnicová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic;
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, CZ-16610 Prague, Czech Republic;
| | - Lucie Rárová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic;
- Correspondence: (L.R.); or (Z.W.)
| | - Zdeněk Wimmer
- Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic;
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, CZ-16628 Prague, Czech Republic
- Correspondence: (L.R.); or (Z.W.)
| |
Collapse
|
17
|
Fan HY, Zhu ZL, Xian HC, Wang HF, Chen BJ, Tang YJ, Tang YL, Liang XH. Insight Into the Molecular Mechanism of Podophyllotoxin Derivatives as Anticancer Drugs. Front Cell Dev Biol 2021; 9:709075. [PMID: 34447752 PMCID: PMC8383743 DOI: 10.3389/fcell.2021.709075] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/22/2021] [Indexed: 02/05/2023] Open
Abstract
Podophyllotoxin (PTOX) is a biologically active compound derived from the podophyllum plant, and both it and its derivatives possess excellent antitumor activity. The PTOX derivatives etoposide (VP-16) and teniposide (VM-26) have been approved by the U.S. Food and Drug Administration (FDA) for cancer treatment, but are far from perfect. Hence, numerous PTOX derivatives have been developed to address the major limitations of PTOX, such as systemic toxicity, drug resistance, and low bioavailability. Regarding their anticancer mechanism, extensive studies have revealed that PTOX derivatives can induce cell cycle G2/M arrest and DNA/RNA breaks by targeting tubulin and topoisomerase II, respectively. However, few studies are dedicated to exploring the interactions between PTOX derivatives and downstream cancer-related signaling pathways, which is reasonably important for gaining insight into the role of PTOX. This review provides a comprehensive analysis of the role of PTOX derivatives in the biological behavior of tumors and potential molecular signaling pathways, aiming to help researchers design and develop better PTOX derivatives.
Collapse
Affiliation(s)
- Hua-yang Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Zhuo-li Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Hong-chun Xian
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Hao-fan Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Bing-jun Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| |
Collapse
|
18
|
Triterpenoid-PEG Ribbons Targeting Selectivity in Pharmacological Effects. Biomedicines 2021; 9:biomedicines9080951. [PMID: 34440155 PMCID: PMC8391127 DOI: 10.3390/biomedicines9080951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/03/2023] Open
Abstract
(1) Background: To compare the effect of selected triterpenoids with their structurally resembling derivatives, designing of the molecular ribbons was targeted to develop compounds with selectivity in their pharmacological effects. (2) Methods: In the synthetic procedures, Huisgen 1,3-dipolar cycloaddition was applied as a key synthetic step for introducing a 1,2,3-triazole ring as a part of a junction unit in the molecular ribbons. (3) Results: The antimicrobial activity, antiviral activity, and cytotoxicity of the prepared compounds were studied. Most of the molecular ribbons showed antimicrobial activity, especially on Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis, with a 50–90% inhibition effect (c = 25 µg·mL−1). No target compound was effective against HSV-1, but 8a displayed activity against HIV-1 (EC50 = 50.6 ± 7.8 µM). Cytotoxicity was tested on several cancer cell lines, and 6d showed cytotoxicity in the malignant melanoma cancer cell line (G-361; IC50 = 20.0 ± 0.6 µM). Physicochemical characteristics of the prepared compounds were investigated, namely a formation of supramolecular gels and a self-assembly potential in general, with positive results achieved with several target compounds. (4) Conclusions: Several compounds of a series of triterpenoid molecular ribbons showed better pharmacological profiles than the parent compounds and displayed certain selectivity in their effects.
Collapse
|