1
|
Zou Z, Tang H, Xiao E, Zhou Y, Yin X, Hu Z, Cai Y, Han Q, Wang L. Ensuring Clinical Excellence: The Mindray SAL9000 Biochemical Immunoassay System. Cell Biochem Biophys 2024:10.1007/s12013-024-01568-3. [PMID: 39419930 DOI: 10.1007/s12013-024-01568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
This study aimed to evaluate the performance and clinical laboratory adaptability of the Mindray SAL9000 biochemical immunoassay automation system, ensuring compliance with ISO 15189 standards and relevant national requirements. We conducted comprehensive performance verification tests on 21 biochemical analytes and 15 immunoassays, including precision, accuracy, linear bias, measurement range assessments, interference testing, reference range validation, inter-instrument comparison, and carryover verification. The Mindray SAL9000 demonstrated high performance across various parameters, with all analytes showing good linearity and minimal bias. While specific interfering substances affected some analytes, the system showed excellent resistance to common interferences such as hemolysis, ascorbic acid, and jaundice. The inter-instrument comparison with the BS2000M and Roche 702 indicated a good correlation, with most parameters showing biases of less than 10%, although exceptions were noted for ALT and AST. In conclusion, the Mindray SAL9000 meets clinical requirements through its high precision, excellent accuracy, and broad measurement range, making it a reliable and adaptable choice for clinical outpatient and emergency laboratories.
Collapse
Affiliation(s)
- Zhenzhen Zou
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Honghui Tang
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Erya Xiao
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yu Zhou
- Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, 215000, China
| | - Xuebei Yin
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Zhen Hu
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yang Cai
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Qingzhen Han
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Lin Wang
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China.
| |
Collapse
|
2
|
Zhang S, Hagens LA, Heijnen NFL, Smit MR, Brinkman P, Fenn D, van der Poll T, Schultz MJ, Bergmans DCJJ, Schnabel RM, Bos LDJ. Breath metabolomics for diagnosis of acute respiratory distress syndrome. Crit Care 2024; 28:96. [PMID: 38521944 PMCID: PMC10960461 DOI: 10.1186/s13054-024-04882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) poses challenges in early identification. Exhaled breath contains metabolites reflective of pulmonary inflammation. AIM To evaluate the diagnostic accuracy of breath metabolites for ARDS in invasively ventilated intensive care unit (ICU) patients. METHODS This two-center observational study included critically ill patients receiving invasive ventilation. Gas chromatography and mass spectrometry (GC-MS) was used to quantify the exhaled metabolites. The Berlin definition of ARDS was assessed by three experts to categorize all patients into "certain ARDS", "certain no ARDS" and "uncertain ARDS" groups. The patients with "certain" labels from one hospital formed the derivation cohort used to train a classifier built based on the five most significant breath metabolites. The diagnostic accuracy of the classifier was assessed in all patients from the second hospital and combined with the lung injury prediction score (LIPS). RESULTS A total of 499 patients were included in this study. Three hundred fifty-seven patients were included in the derivation cohort (60 with certain ARDS; 17%), and 142 patients in the validation cohort (47 with certain ARDS; 33%). The metabolites 1-methylpyrrole, 1,3,5-trifluorobenzene, methoxyacetic acid, 2-methylfuran and 2-methyl-1-propanol were included in the classifier. The classifier had an area under the receiver operating characteristics curve (AUROCC) of 0.71 (CI 0.63-0.78) in the derivation cohort and 0.63 (CI 0.52-0.74) in the validation cohort. Combining the breath test with the LIPS does not significantly enhance the diagnostic performance. CONCLUSION An exhaled breath metabolomics-based classifier has moderate diagnostic accuracy for ARDS but was not sufficiently accurate for clinical use, even after combination with a clinical prediction score.
Collapse
Affiliation(s)
- Shiqi Zhang
- Amsterdam UMC, Location AMC, Department of Intensive Care, University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands.
| | - Laura A Hagens
- Amsterdam UMC, Location AMC, Department of Intensive Care, University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands
| | - Nanon F L Heijnen
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marry R Smit
- Amsterdam UMC, Location AMC, Department of Intensive Care, University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands
| | - Paul Brinkman
- Amsterdam UMC, Location AMC, University of Amsterdam, Pulmonary Medicine, Amsterdam, The Netherlands
| | - Dominic Fenn
- Amsterdam UMC, Location AMC, University of Amsterdam, Pulmonary Medicine, Amsterdam, The Netherlands
| | - Tom van der Poll
- Amsterdam UMC, Location AMC, Division of Infectious Diseases, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, Location AMC, Center of Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Amsterdam UMC, Location AMC, Department of Intensive Care, University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dennis C J J Bergmans
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Maastricht University Medical Centre+, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, The Netherlands
| | - Ronny M Schnabel
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lieuwe D J Bos
- Amsterdam UMC, Location AMC, Department of Intensive Care, University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam UMC, Location AMC, University of Amsterdam, Pulmonary Medicine, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Hagens LA, Heijnen NFL, Smit MR, Verschueren ARM, Nijsen TME, Geven I, Presură CN, Rietman R, Fenn DW, Brinkman P, Schultz MJ, Bergmans DCJJ, Schnabel RM, Bos LDJ. Octane in exhaled breath to diagnose acute respiratory distress syndrome in invasively ventilated intensive care unit patients. ERJ Open Res 2023; 9:00214-2023. [PMID: 37850212 PMCID: PMC10577595 DOI: 10.1183/23120541.00214-2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/03/2023] [Indexed: 10/19/2023] Open
Abstract
Background The concentration of exhaled octane has been postulated as a reliable biomarker for acute respiratory distress syndrome (ARDS) using metabolomics analysis with gas chromatography and mass spectrometry (GC-MS). A point-of-care (POC) breath test was developed in recent years to accurately measure octane at the bedside. The aim of the present study was to validate the diagnostic accuracy of exhaled octane for ARDS using a POC breath test in invasively ventilated intensive care unit (ICU) patients. Methods This was an observational cohort study of consecutive patients receiving invasive ventilation for at least 24 h, recruited in two university ICUs. GC-MS and POC breath tests were used to quantify the exhaled octane concentration. ARDS was assessed by three experts following the Berlin definition and used as the reference standard. The area under the receiver operating characteristic curve (AUC) was used to assess diagnostic accuracy. Results 519 patients were included and 190 (37%) fulfilled the criteria for ARDS. The median (interquartile range) concentration of octane using the POC breath test was not significantly different between patients with ARDS (0.14 (0.05-0.37) ppb) and without ARDS (0.11 (0.06-0.26) ppb; p=0.64). The AUC for ARDS based on the octane concentration in exhaled breath using the POC breath test was 0.52 (95% CI 0.46-0.57). Analysis of exhaled octane with GC-MS showed similar results. Conclusions Octane in exhaled breath has insufficient diagnostic accuracy for ARDS. This disqualifies the use of octane as a biomarker in the diagnosis of ARDS and challenges most of the research performed up to now in the field of exhaled breath metabolomics.
Collapse
Affiliation(s)
- Laura A Hagens
- Department of Intensive Care, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Nanon F L Heijnen
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marry R Smit
- Department of Intensive Care, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | | | - Tamara M E Nijsen
- Sleep and Respiratory Solutions, Philips Research, Eindhoven, The Netherlands
| | - Inge Geven
- Sleep and Respiratory Solutions, Philips Research, Eindhoven, The Netherlands
| | - Cristian N Presură
- Sleep and Respiratory Solutions, Philips Research, Eindhoven, The Netherlands
| | - Ronald Rietman
- Sleep and Respiratory Solutions, Philips Research, Eindhoven, The Netherlands
| | - Dominic W Fenn
- Department of Respiratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Brinkman
- Department of Respiratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dennis C J J Bergmans
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Ronny M Schnabel
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lieuwe D J Bos
- Department of Intensive Care, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Department of Respiratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Kiss H, Örlős Z, Gellért Á, Megyesfalvi Z, Mikáczó A, Sárközi A, Vaskó A, Miklós Z, Horváth I. Exhaled Biomarkers for Point-of-Care Diagnosis: Recent Advances and New Challenges in Breathomics. MICROMACHINES 2023; 14:391. [PMID: 36838091 PMCID: PMC9964519 DOI: 10.3390/mi14020391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cancers, chronic diseases and respiratory infections are major causes of mortality and present diagnostic and therapeutic challenges for health care. There is an unmet medical need for non-invasive, easy-to-use biomarkers for the early diagnosis, phenotyping, predicting and monitoring of the therapeutic responses of these disorders. Exhaled breath sampling is an attractive choice that has gained attention in recent years. Exhaled nitric oxide measurement used as a predictive biomarker of the response to anti-eosinophil therapy in severe asthma has paved the way for other exhaled breath biomarkers. Advances in laser and nanosensor technologies and spectrometry together with widespread use of algorithms and artificial intelligence have facilitated research on volatile organic compounds and artificial olfaction systems to develop new exhaled biomarkers. We aim to provide an overview of the recent advances in and challenges of exhaled biomarker measurements with an emphasis on the applicability of their measurement as a non-invasive, point-of-care diagnostic and monitoring tool.
Collapse
Affiliation(s)
- Helga Kiss
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zoltán Örlős
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Áron Gellért
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Angéla Mikáczó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Anna Sárközi
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Attila Vaskó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Zsuzsanna Miklós
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Ildikó Horváth
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| |
Collapse
|
5
|
Jeerage KM, Berry J, Murray J, Goodman C, Piotrowski P, Jones C, Cecelski CE, Carney J, Lippa K, Lovestead T. The need for multicomponent gas standards for breath biomarker analysis. J Breath Res 2022; 16. [PMID: 35584612 DOI: 10.1088/1752-7163/ac70ef] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/18/2022] [Indexed: 11/11/2022]
Abstract
Exhaled breath is a non-invasive, information-rich matrix with the potential to diagnose or monitor disease, including infectious disease. Despite significant effort dedicated to biomarker identification in case control studies, very few breath tests are established in practice. In this topical review, we identify how gas standards support breath analysis today and what is needed to support further expansion and translation to practice. We examine forensic and clinical breath tests and discuss how confidence has been built through unambiguous biomarker identification and quantitation supported by gas calibration standards. Based on this discussion, we identify a need for multicomponent gas standards with part-per-trillion to part-per-million concentrations. We highlight National Institute of Standards and Technology (NIST) gas standards developed for atmospheric measurements that are also relevant to breath analysis and describe investigations of long-term stability, chemical reactions, and interactions with gas cylinder wall treatments. An overview of emerging online instruments and their need for gas standards is also presented. This review concludes with a discussion of our ongoing research to examine the feasibility of producing multicomponent gas standards at breath-relevant concentrations. Such standards could be used to investigate interference from ubiquitous endogenous compounds and as a starting point for standards tailored to specific breath tests.
Collapse
Affiliation(s)
- Kavita M Jeerage
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, MS 647.07, Boulder, Colorado, 80305, UNITED STATES
| | - Jennifer Berry
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado, 80305, UNITED STATES
| | - Jacolin Murray
- Chemical Sciences Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland, 20899, UNITED STATES
| | - Cassie Goodman
- Chemical Sciences Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland, 20899, UNITED STATES
| | - Paulina Piotrowski
- Chemical Sciences Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland, 20899, UNITED STATES
| | - Christina Jones
- Office of Advanced Manufacturing, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland, 20899, UNITED STATES
| | - Christina Elena Cecelski
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland, UNITED STATES
| | - Jennifer Carney
- Chemical Sciences Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland, 20899, UNITED STATES
| | - Katrice Lippa
- Office of Weights and Measures, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland, 20899, UNITED STATES
| | - Tara Lovestead
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, MS 647.07, Boulder, Colorado, 80305, UNITED STATES
| |
Collapse
|
6
|
Hagens LA, Heijnen NFL, Smit MR, Verschueren ARM, Nijsen TME, Geven I, Schultz MJ, Bergmans DCJJ, Schnabel RM, Bos LDJ. Diagnosis of acute respiratory distress syndrome (DARTS) by bedside exhaled breath octane measurements in invasively ventilated patients: protocol of a multicentre observational cohort study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1262. [PMID: 34532399 PMCID: PMC8421964 DOI: 10.21037/atm-21-1384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/28/2021] [Indexed: 11/08/2022]
Abstract
Background Acute respiratory distress syndrome (ARDS) is currently diagnosed by the Berlin Definition. Diagnosis is subjective and often late. Untargeted metabolomics analysis of exhaled breath with gas chromatography and mass spectrometry (GC-MS) showed that the breath concentration of octane has a high diagnostic accuracy for ARDS. To facilitate rapid bedside measurement of this biomarker, a point-of-care (POC) breath test was developed. A prototype already showed good reproducibility and repeatability for the detection of octane. In this study we aim to measure octane in exhaled breath of invasively ventilated intensive care unit (ICU) patients and validate the diagnostic accuracy of the breath test for the early diagnosis of ARDS. Methods This is a multicentre observational cohort study in patients admitted to the ICU receiving invasive ventilation for at least 24 hours. At least 500 patients in two academic hospitals in The Netherlands will be included. ARDS patients will be compared to patients without ARDS. ARDS diagnosis will be based on the Berlin Definition. Two diagnostic assessments will be performed during the first 72 hours of invasive ventilation, including breath sampling, arterial blood gas analysis and lung ultrasound (LUS). In patients fulfilling the criteria for ARDS, three additional breath samples will be taken to assess resolution. The primary endpoint is the diagnostic accuracy for ARDS, defined by the area under the receiver operating characteristics curve (AUROCC) of octane concentration in exhaled breath. Secondary endpoints are the association between exhaled breath octane and ARDS adjusted for confounders, and the added diagnostic accuracy of the breath test on top of the Lung Injury Prediction Score (LIPS). Discussion This is the first study that validates a metabolic biomarker of ARDS in an adequate sample size. The major novelty is the use of a POC breath test that has been specifically developed for the purpose of diagnosing ARDS. Strengths are; assessment in the early phase, in patients at risk for ARDS, longitudinal sampling and an expert panel to reliably diagnose ARDS. This study will provide a decisive answer on the question if exhaled breath metabolomics can be used to diagnose ARDS. Trial registration The trial is registered at trialregister.nl (ID: NL8226) with the tag “DARTS”.
Collapse
Affiliation(s)
- Laura A Hagens
- Department of Intensive Care, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nanon F L Heijnen
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marry R Smit
- Department of Intensive Care, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Alwin R M Verschueren
- Sleep & Respiratory Solutions, Philips Research, High Tech Campus, Eindhoven, The Netherlands
| | - Tamara M E Nijsen
- Sleep & Respiratory Solutions, Philips Research, High Tech Campus, Eindhoven, The Netherlands
| | - Inge Geven
- Sleep & Respiratory Solutions, Philips Research, High Tech Campus, Eindhoven, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dennis C J J Bergmans
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ronny M Schnabel
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lieuwe D J Bos
- Department of Intensive Care, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Respiratory Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Pelosi P, Ball L, Barbas CSV, Bellomo R, Burns KEA, Einav S, Gattinoni L, Laffey JG, Marini JJ, Myatra SN, Schultz MJ, Teboul JL, Rocco PRM. Personalized mechanical ventilation in acute respiratory distress syndrome. Crit Care 2021; 25:250. [PMID: 34271958 PMCID: PMC8284184 DOI: 10.1186/s13054-021-03686-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/22/2023] Open
Abstract
A personalized mechanical ventilation approach for patients with adult respiratory distress syndrome (ARDS) based on lung physiology and morphology, ARDS etiology, lung imaging, and biological phenotypes may improve ventilation practice and outcome. However, additional research is warranted before personalized mechanical ventilation strategies can be applied at the bedside. Ventilatory parameters should be titrated based on close monitoring of targeted physiologic variables and individualized goals. Although low tidal volume (VT) is a standard of care, further individualization of VT may necessitate the evaluation of lung volume reserve (e.g., inspiratory capacity). Low driving pressures provide a target for clinicians to adjust VT and possibly to optimize positive end-expiratory pressure (PEEP), while maintaining plateau pressures below safety thresholds. Esophageal pressure monitoring allows estimation of transpulmonary pressure, but its use requires technical skill and correct physiologic interpretation for clinical application at the bedside. Mechanical power considers ventilatory parameters as a whole in the optimization of ventilation setting, but further studies are necessary to assess its clinical relevance. The identification of recruitability in patients with ARDS is essential to titrate and individualize PEEP. To define gas-exchange targets for individual patients, clinicians should consider issues related to oxygen transport and dead space. In this review, we discuss the rationale for personalized approaches to mechanical ventilation for patients with ARDS, the role of lung imaging, phenotype identification, physiologically based individualized approaches to ventilation, and a future research agenda.
Collapse
Affiliation(s)
- Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy.
- Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy.
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy
| | - Carmen S V Barbas
- Pneumology and Intensive Care Medicine, University of São Paulo, São Paulo, Brazil
- Adult Intensive Care Unit, Albert Einstein Hospital, São Paulo, Brazil
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- Data Analytics Research and Evaluation Centre, The University of Melbourne and Austin Hospital, Melbourne, Australia
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, Australia
| | - Karen E A Burns
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Unity Health Toronto-St. Michael's Hospital, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - Sharon Einav
- Intensive Care Unit of the Shaare Zedek Medical Medical Centre, Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Luciano Gattinoni
- Department of Anaesthesiology, Emergency, and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, University Hospital Galway, and School of Medicine, National University of Ireland, Galway, Ireland
| | - John J Marini
- University of Minnesota and Regions Hospital, St. Paul, MN, USA
| | - Sheila N Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marcus J Schultz
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jean Louis Teboul
- Service de Médecine Intensive-Réanimation, Hôpital Bicêtre, Inserm UMR S_999, AP-HP Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|