1
|
Al Jedani S, Lima C, Smith CI, Gunning PJ, Shaw RJ, Barrett SD, Triantafyllou A, Risk JM, Goodacre R, Weightman P. An optical photothermal infrared investigation of lymph nodal metastases of oral squamous cell carcinoma. Sci Rep 2024; 14:16050. [PMID: 38992088 PMCID: PMC11239877 DOI: 10.1038/s41598-024-66977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024] Open
Abstract
In this study, optical photothermal infrared (O-PTIR) spectroscopy combined with machine learning algorithms were used to evaluate 46 tissue cores of surgically resected cervical lymph nodes, some of which harboured oral squamous cell carcinoma nodal metastasis. The ratios obtained between O-PTIR chemical images at 1252 cm-1 and 1285 cm-1 were able to reveal morphological details from tissue samples that are comparable to the information achieved by a pathologist's interpretation of optical microscopy of haematoxylin and eosin (H&E) stained samples. Additionally, when used as input data for a hybrid convolutional neural network (CNN) and random forest (RF) analyses, these yielded sensitivities, specificities and precision of 98.6 ± 0.3%, 92 ± 4% and 94 ± 5%, respectively, and an area under receiver operator characteristic (AUC) of 94 ± 2%. Our findings show the potential of O-PTIR technology as a tool to study cancer on tissue samples.
Collapse
Affiliation(s)
- Safaa Al Jedani
- Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE, UK
- Department of Physics, University of Jeddah, Jeddah, Saudi Arabia
| | - Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Caroline I Smith
- Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE, UK
| | - Philip J Gunning
- Department of Molecular and Clinical Cancer Medicine, Liverpool Head and Neck Centre, University of Liverpool, Liverpool, L7 8TX, UK
| | - Richard J Shaw
- Department of Molecular and Clinical Cancer Medicine, Liverpool Head and Neck Centre, University of Liverpool, Liverpool, L7 8TX, UK
- Head and Neck Surgery, Liverpool University Foundation NHS Trust, Aintree Hospital, Liverpool, L9 7AL, UK
| | - Steve D Barrett
- Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE, UK
| | - Asterios Triantafyllou
- Department of Cellular Pathology, Liverpool Clinical Laboratories, University of Liverpool, Liverpool, L7 8YE, UK
| | - Janet M Risk
- Department of Molecular and Clinical Cancer Medicine, Liverpool Head and Neck Centre, University of Liverpool, Liverpool, L7 8TX, UK
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Peter Weightman
- Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE, UK.
| |
Collapse
|
2
|
Al Jedani S, Smith CI, Ingham J, Whitley CA, Ellis BG, Triantafyllou A, Gunning PJ, Gardner P, Risk JM, Shaw RJ, Weightman P, Barrett SD. Tissue discrimination in head and neck cancer using image fusion of IR and optical microscopy. Analyst 2023; 148:4189-4194. [PMID: 37529901 PMCID: PMC10440831 DOI: 10.1039/d3an00692a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
A regression-based fusion algorithm has been used to merge hyperspectral Fourier transform infrared (FTIR) data with an H&E image of oral squamous cell carcinoma metastases in cervical lymphoid nodal tissue. This provides insight into the success of the ratio of FTIR absorbances at 1252 cm-1 and 1285 cm-1 in discriminating between these tissue types. The success is due to absorbances at these two wavenumbers being dominated by contributions from DNA and collagen, respectively. A pixel-by-pixel fit of the fused spectra to the FTIR spectra of collagen, DNA and cytokeratin reveals the contributions of these molecules to the tissue at high spatial resolution.
Collapse
Affiliation(s)
- Safaa Al Jedani
- Department of Physics, University of Liverpool, L69 7ZE, UK.
- Department of Physics, University of Jeddah, Saudi Arabia
| | | | - James Ingham
- Department of Physics, University of Liverpool, L69 7ZE, UK.
| | - Conor A Whitley
- Department of Physics, University of Liverpool, L69 7ZE, UK.
| | - Barnaby G Ellis
- Department of Physics, University of Liverpool, L69 7ZE, UK.
| | - Asterios Triantafyllou
- Department of Cellular Pathology, Liverpool Clinical Laboratories, University of Liverpool, Liverpool, L7 8YE, UK
| | - Philip J Gunning
- Liverpool Head and Neck Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, L7 8TX, UK
| | - Peter Gardner
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Janet M Risk
- Liverpool Head and Neck Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, L7 8TX, UK
| | - Richard J Shaw
- Liverpool Head and Neck Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, L7 8TX, UK
- Head and Neck Surgery, Liverpool University Foundation NHS Trust, Aintree Hospital, Liverpool, L9 7AL, UK
| | - Peter Weightman
- Department of Physics, University of Liverpool, L69 7ZE, UK.
| | - Steve D Barrett
- Department of Physics, University of Liverpool, L69 7ZE, UK.
| |
Collapse
|
3
|
Tang M, Han Y, Jia D, Yang Q, Cheng JX. Far-field super-resolution chemical microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:137. [PMID: 37277396 PMCID: PMC10240140 DOI: 10.1038/s41377-023-01182-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
Far-field chemical microscopy providing molecular electronic or vibrational fingerprint information opens a new window for the study of three-dimensional biological, material, and chemical systems. Chemical microscopy provides a nondestructive way of chemical identification without exterior labels. However, the diffraction limit of optics hindered it from discovering more details under the resolution limit. Recent development of super-resolution techniques gives enlightenment to open this door behind far-field chemical microscopy. Here, we review recent advances that have pushed the boundary of far-field chemical microscopy in terms of spatial resolution. We further highlight applications in biomedical research, material characterization, environmental study, cultural heritage conservation, and integrated chip inspection.
Collapse
Affiliation(s)
- Mingwei Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Danchen Jia
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, MA, 02459, USA
| | - Qing Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, MA, 02459, USA.
| |
Collapse
|
4
|
Ovide O, Corzo R, Trejos T. The analysis of glass from portable electronic devices and glass accessories using µ-XRF for forensic investigations. Forensic Sci Int 2023; 343:111550. [PMID: 36623406 DOI: 10.1016/j.forsciint.2022.111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/24/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
In this study, glass from 30 different portable electronic devices (PED) screens, 15 screen protectors (SP), and 3 brands of liquid glass (LG) were analyzed using a µ-XRF instrument equipped with two silicon drift detectors (SDD). Additional analysis of six fragments, all originating from the same PED and SP screen, assessed the elemental homogeneity within a single glass source. Examinations of the 30 PEDs and the majority of the SP screens revealed spectra with low sodium and high potassium, which is likely due to the ion exchange process at the surface during the glass manufacturing process. The absence of calcium in the XRF spectra was also characteristic of PED formulations. Initial spectral overlay examinations classified the PED and SP samples into major groups based on their distinctive elemental profiles (5 PED groups, 4 SP groups). Further discrimination of within-group samples was possible when considering reproducible differences in signal intensities (discrimination 98.4 % PED, 98.1 % SP). Additionally, a 3 s (3 % Relative Standard Deviation, RSD) comparison criterion produced the lowest false exclusion rates among same-source fragments (3.3 % PED, 0.8 % SP) while maintaining a high discrimination power among different-source fragments (98.4 % PED, 100 % SP). Same source PED and SP samples resulted in low variability within most elements examined (< 8 % RSD), except for potassium. An experimental threshold established from the quantitative metric of spectral similarity, spectral contrast angle (SCA) ratio of same-source and different-source datasets, produced false exclusion and false inclusion rates of 4 % or 0.95 % for PED and SP fragments, respectively. Spectra of just the liquid glass residues indicated some major elements present but the effect of these elements in PED fragments treated with liquid glass was not significant. This study provides a preliminary understanding of the elemental composition of modern PED glasses and their accessories and the discrimination capability of µ-XRF for forensic comparisons.
Collapse
Affiliation(s)
- Oriana Ovide
- West Virginia University, Department of Forensic and Investigative Sciences, Morgantown, WV 26506, the United States of America
| | - Ruthmara Corzo
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, the United States of America
| | - Tatiana Trejos
- West Virginia University, Department of Forensic and Investigative Sciences, Morgantown, WV 26506, the United States of America.
| |
Collapse
|
5
|
Review on the applications of atomic force microscopy imaging in proteins. Micron 2022; 159:103293. [DOI: 10.1016/j.micron.2022.103293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
|