1
|
Feng Y, Li X, Yang Q, Guo D, Li Y, Tong Y, Ye BC. Dual-template molecularly imprinted electrochemical sensor based on foamed iron-based MOF for simultaneous and specific detection of α-arbutin and β-arbutin in cosmetics. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
2
|
Song H, Wang F, Zhao Y, Gao R, He Y, Yan Q, Chen X, Pfefferle LD, Xu S, Sheng Y. Spatially-directed magnetic molecularly imprinted polymers with good anti-interference for simultaneous enrichment and detection of dual disease-related bio-indicators. NANOSCALE 2022; 14:11343-11352. [PMID: 35894543 DOI: 10.1039/d2nr03356a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As the changes of biomarkers directly reflect the occurrence of degenerative diseases, accurate detection of biomarkers is of great significance for disease diagnosis and control. However, single index detection has high uncertainties to accurately reflect the pathological characteristics because of the complexity of the human internal environment and the extremely trace concentration of indicators. To this end, a method for simultaneous detection of dual-biomarkers based on anti-interference magnetic molecularly imprinted polymers (D-mag-MIPs) is thereby proposed, and successfully applied in human urine analysis for the detection of Parkinson's disease bio-indicators 4-dihydroxyphenylacetic acid (DOPAC) and dopamine (DA). In this work, carboxyl functionalized ferric oxide served as a magnetic core, laying a solid foundation for batch detection. Hyperbranched polyethylenimine, whose abundant amino groups can provide multiple interaction forces to templates with high affinity, is employed as a functional monomer. Relative to single-template MIPs, D-mag-MIPs achieve the detection of dual bio-indicators in a one-time test, reducing the false positive result probability and enhancing the detection accuracy. The proposed methodology has been evaluated to exhibit good anti-interference, satisfactory precision, low detection limits, wide linear ranges and fast batch detection for DA and DOPAC. This work thus offers an alternative and efficient pathway for convenient batch detection of dual bio-indicators from biofluids at once.
Collapse
Affiliation(s)
- Huijia Song
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Feng Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Yayun Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Yulian He
- University of Michigan-Shanghai Jiaotong University Joint Institute, Shanghai 200240, China
| | - Qing Yan
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaoyi Chen
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lisa D Pfefferle
- Department of Chemical & Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA
| | - Silong Xu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Ying Sheng
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
3
|
Çorman M, Ozcelikay G, Cetinkaya A, Kaya S, Armutcu C, Özgür E, Uzun L, Ozkan S. Metal-Organic Frameworks as an Alternative Smart Sensing Platform for Designing Molecularly Imprinted Electrochemical Sensors. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|