1
|
Cui Y, Zheng X, Xu T, Ji B, Mei J, Li Z. A Self-Cleaning TiO 2 Bacterial Cellulose Super-Hydrophilic Underwater Super-Oleophobic Composite Membrane for Efficient Oil-Water Separation. Molecules 2023; 28:molecules28083396. [PMID: 37110633 PMCID: PMC10141678 DOI: 10.3390/molecules28083396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Due to the increasingly serious problem of offshore oil spills, research related to oil-water separation has attracted more and more attention. Here, we prepared a super-hydrophilic/underwater super-oleophobic membrane (hereinafter referred to as BTA) using poly-dopamine (PDA) to adhesive TiO2 nanoparticles on the surface of bacterial cellulose, coated with sodium alienate by vacuum-assisted filtration technique. This demonstrates its excellent underwater super-oleophobic property. Its contact angle is about 153°. Remarkably, BTA has 99% separation efficiency. More importantly, BTA still showed excellent anti-pollution property under ultraviolet light after 20 cycles. BTA has the advantages of low cost, environmentally friendliness and good anti-fouling performance. We believe it can play an important role in dealing with problems related to oily wastewater.
Collapse
Affiliation(s)
- Yawen Cui
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Xudong Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Tongtong Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Biao Ji
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jinfeng Mei
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Ultrafiltration membranes prepared via mixed solvent phase separation with enhanced performance for produced water treatment. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Han X, Guo Z, Liu W. Cellulose/Poly(vinyl alcohol)/Tannic Acid Porous Cross-Linked Composite Frame Materials with Excellent Oil/Water Separation Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12795-12803. [PMID: 36215179 DOI: 10.1021/acs.langmuir.2c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Problems such as increasingly serious water pollution attracted widespread concern. The underwater OCAs of the samples became larger with increasing pH and the under-oil WCAs of the samples did not vary regularly with increasing pH. Nanoneedle structures were grown on metal foam by anodization. Cellulose is fixed to the frame by cross-linking with supramolecular binder poly(vinyl alcohol)/tannin. A cellulose/poly(vinyl alcohol)/tannin porous composite framework with special wettability is prepared. This porous composite framework can be used for the continuous separation of oil/water mixtures with high separation efficiency, high throughput, excellent reusability, and mechanical durability. In addition, due to the coating of cellulose and the supramolecular binder, the pore size of the frame is reduced, and the cagelike structure of the porous framework can promote its demulsification effect. Therefore, the cellulose/poly(vinyl alcohol)/tannic acid porous composite frame can also be used for the separation of oil/water emulsions. This porous frame material has broad application prospects in oil spill treatment and sewage purification.
Collapse
Affiliation(s)
- Xutong Han
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, People's Republic of China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, People's Republic of China
| |
Collapse
|
4
|
Zeng Q, Zhang J, Zhao S, Yue H, Huang J, Guo Z, Liu W. Durable 3D Porous Superhydrophobic Composites for Versatile Emulsion Separation in Multiple Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12217-12228. [PMID: 36169614 DOI: 10.1021/acs.langmuir.2c01855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polydopamine as a multifunctional biomimetic polymer with nonselective strong adhesion properties has become a hot research topic in recent years. However, there are a few reports on the durable and effective emulsion separation of polydopamine composites from other materials. Therefore, it is necessary to construct durable polydopamine composites to achieve selective adsorption of materials. In this work, polypyrrole (PPy)-PDA was obtained on sponges by an in situ polymerization reaction, followed by the attachment of SiO2 nanoparticles to the surface by polydimethylsiloxane to achieve superhydrophobicity. As a result, previously unreported selective superhydrophobic adsorbents for PPy-PDA coatings were obtained. The prepared sponges have an excellent adsorption capacity for oils and organic solvents. Not only can the sponges absorb 19-39 g of organic solvents per gram but they can also absorb oil from oil-in-water emulsions. The chemical oxygen demand value of the emulsion can be reduced to 219 mg/L after separation. More importantly, the performance remains good in the cycle test, and due to the construction of a durable superhydrophobic sponge, it can still maintain its relatively good performance in artificial seawater, acid-base environments, and can achieve relatively stable emulsion separation. At the same time, the potential of the polymer material composited with PDA in lasting and stable emulsion separation was also verified.
Collapse
Affiliation(s)
- Qinghong Zeng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Jiaxu Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
- School of Engineering and Technology, China University of Geosciences, Beijing 730000, People's Republic of China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Hao Yue
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
5
|
Zhou L, Su C, Chen B, Zhao Q, Wang X, Zhao X, Ju G. Durable ER@SiO2@PDMS superhydrophobic composite designed by double crosslinking strategy for efficient oil-water separation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Zeng Q, Qiu L, Zhao S, Zhang J, Huang J, Guo Z. Two-step facile fabrication of superamphiphilic biomimic membrane with micro-nano structure for oil-water emulsion separation on-demand. NEW J CHEM 2022. [DOI: 10.1039/d2nj01785g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Superamphiphilic materials have attracted much attention due to their different wettability in different media. Through a simple two-step method, we fabricated a smart separation membrane with super-amphiphilic wettability. Under the...
Collapse
|
7
|
Lei J, Guo Z. Superamphiphilic stainless steel mesh for oil/water emulsion separation on-demand. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Ju G, Zhou L, Jiao C, Shen J, Luan Y, Zhao X. One-Step Fabrication of a Functionally Integrated Device Based on Polydimethylsiloxane-Coated SiO 2 NPs for Efficient and Continuous Oil Absorption. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5998. [PMID: 34683592 PMCID: PMC8537208 DOI: 10.3390/ma14205998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022]
Abstract
The construction of superhydrophobic surfaces necessitates the rational design of topographic surface structure and the reduction of surface energy. To date, the reported strategies are usually complex with multi-steps and costly. Thus, the simultaneous achievement of the two indispensable factors is highly desired, yet rather challenging. Herein, we develop a novel structure engineering strategy of realizing the fabrication of a functionally integrated device (FID) with a superhydrophobic surface via a one-step spraying method. Specifically, silica nanoparticles are used to control the surface roughness of the device, while polydimethylsiloxane is employed as the hydrophobic coating. Benefitting from the adopted superhydrophobicity, the as-fabricated FID exhibits a continuous, excellent oil-water separating performance (e.g., 92.5% separating efficiency) when coupled with a peristaltic pump. Notably, a smart design of incorporating a gas switch is adopted in this device, thereby effectively preventing water from entering the FID, realizing thorough oil collection, and avoiding secondary pollution. This work opens up an avenue for the design and development of the FID, accessible for rapid preparation and large-scale practical application.
Collapse
Affiliation(s)
- Guannan Ju
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China;
| | - Lei Zhou
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China;
| | - Chang Jiao
- China National Accreditation Service for Conformity Assessment, Beijing 100062, China;
| | - Jiafeng Shen
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Yihao Luan
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China;
| | - Xinyu Zhao
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China;
| |
Collapse
|
9
|
Zhao S, Liang Y, Yang Y, Huang J, Guo Z, Liu W. A robust surface with superhydrophobicity and underwater superoleophobicity for on-demand oil/water separation. NANOSCALE 2021; 13:15334-15342. [PMID: 34494623 DOI: 10.1039/d1nr04658f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Superhydrophobic and underwater superoleophobic surface combine the superiorities of the two opposite wettabilities. Generally, such a surface is constructed by hydrophilic areas and hydrophobic areas treated with fluorine-containing modifiers. However, the surface energy in a narrow range and poor bonding force between water-loving and water-repelling components make the surface fragile and its wettability unstable. Herein, we present a strategy to fabricate a robust surface with superhydrophobicity and underwater superoleophobicity. Hydrophilic aluminum phosphate as a binder can strongly interact with superhydrophobic titanium dioxide nanoparticles. Mixing the two ingredients to accurately control the surface energy in a narrow range and then spray coating, the superhydrophobic and underwater superoleophobic surfaces are conveniently prepared on diverse substrates. Under acid/base aqueous solution conditions, O2-plasma etching, and sand impingement, the coatings remain superhydrophobic and underwater superoleophobic. Taking advantage of the wettability and robustness of coatings, the as-prepared membranes realize on-demand and multicycle separation under gravity without continuous external stimulus. Importantly, even after 100 sand impingement cycles, the treated membranes still maintain prominent separation performance.
Collapse
Affiliation(s)
- Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yongmin Liang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yu Yang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| |
Collapse
|
10
|
Fan M, Ren Z, Zhang Z, Yang Y, Guo Z. Simple preparation of a durable and low-cost load-bearing three-dimensional porous material for emulsion separation. NEW J CHEM 2021. [DOI: 10.1039/d1nj03049c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Superhydrophobic MR–C composites were used for the separation of water-in-oil emulsions. Under a load of 500 N with a reciprocating wear, the contact angle was kept at 146 ± 2°. The oil-in-water emulsion can still be separated efficiently.
Collapse
Affiliation(s)
- Mingzhi Fan
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiying Ren
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Zhen Zhang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Yu Yang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|