1
|
Puerta A, González-Bakker A, Romanos E, Domínguez IA, Martínez-Montiel M, Merino-Montiel P, Herrera RP, Gimeno MC, Fernández-Bolaños JG, López Ó, Padrón JM. Multimodal antiproliferative effects of oleanolic acid mitocans: In vitro and in vivo studies. Biochem Pharmacol 2025; 234:116807. [PMID: 39978689 DOI: 10.1016/j.bcp.2025.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Mitochondria-targeting drugs (mitocans) based on organic cations are emerging as powerful and selective cancer therapeutics. In this study, we have evaluated a novel series of oleanolic acid-derived mitocans, revealing nanomolar-range antiproliferative effects against human solid tumor cells. Continuous live-cell imaging revealed extensive cytoplasmic vacuolation, while mechanistic studies identified paraptosis as the dominant form of cell death. Remarkably, in vivo experiments demonstrated significant tumor growth inhibition in mice, with no detectable toxicity at therapeutic doses. These findings highlight the potential of oleanolic acid-derived mitocans as promising candidates for cancer therapy.
Collapse
Affiliation(s)
- Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Apartado 456, E-38200 La Laguna, Spain
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Apartado 456, E-38200 La Laguna, Spain
| | - Eduardo Romanos
- Servicio de Imagen Médica y Fenotipado, Instituto Aragonés de Ciencias de la Salud, Centro de Investigación Biomédica de Aragón (CIBA), Avda. San Juan Bosco, 13, Planta D, E-50009 Zaragoza, Spain; Laboratorio de Organocatálisis Asimétrica, Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain; Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain
| | - Inmaculada Aguilar Domínguez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Mónica Martínez-Montiel
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Raquel P Herrera
- Laboratorio de Organocatálisis Asimétrica, Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain.
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain
| | - José G Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain.
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Apartado 456, E-38200 La Laguna, Spain.
| |
Collapse
|
2
|
Rokitskaya TI, Khailova LS, Strelnik AG, Kotova EA, Mironov VF, Tatarinov DA, Antonenko YN. Replacement of phenyl substituents at phosphorus by hexyl ones in 2-(2-hydroxyaryl)vinylphosphonium salts can tune the nature of the induced proton transport through lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184417. [PMID: 39983808 DOI: 10.1016/j.bbamem.2025.184417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/05/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
2-(2-hydroxyaryl)vinylphosphonium salts are zwitterionic protonophores previously shown to induce proton transport across lipid membranes via cyclic deprotonation and protonation of the hydroxyl group. Here, we examine the impact of the kind of substituents at phosphorus on the protonophoric activity of these compounds. In particular, replacement of all the three phenyl groups at the phosphorus atom of the 2-(2-hydroxyaryl)vinyl(triphenyl)phosphonium salt (2HVPPh3) by hexyl chains (2HVPHex3) led to a tremendous increase in electric current induced by the phosphonium salt across planar bilayer lipid membranes (BLM). Remarkably, the BLM conductance quadratically increased with increasing 2HVPHex3 concentration, whereas a linear concentration dependence of the BLM current was observed for 2HVPPh3, 2HVPHexPh2 ((hexyl)diphenyl) and 2HVPHex2Ph ((dihexyl)phenyl), i.e., in the presence of at least one phenyl substituent at the phosphorus atom. Proton selectivity of the 2HVPHex3-induced electric current was close to perfect in membranes formed of diphytanylphosphatidylcholine with the decreased dipole potential, but rather low in membranes formed of the usual synthetic lipid - diphytanoylphosphatidylcholine. We hypothesize that the proton transport across BLM is carried out by 2HVPHex3 dimers. By contrast, the uncoupling activity of 2HVPHex3 in isolated rat liver mitochondria was observed at similar concentrations, as found for the compounds with phenyl substituents, thereby indicating that dimers do not play a key role in the uncoupling process. At the same time, the rate of 2HVPHex3-induced mitochondrial swelling under the deenergized conditions in potassium acetate medium, reflecting the protonophoric activity of the compound in mitochondria, significantly exceeded that for other compounds.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anna G Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Dmitry A Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russian Federation; Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russian Federation
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
3
|
Rokitskaya TI, Kirsanov RS, Khailova LS, Panteleeva AA, Lyamzaev KG, Korshunova GA, Kotova EA, Antonenko YN. Methylation of Phenyl Rings in Ester-Stabilized Phosphorus Ylides Vastly Enhances Their Protonophoric Activity. Chembiochem 2024; 25:e202300848. [PMID: 38353515 DOI: 10.1002/cbic.202300848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Indexed: 03/05/2024]
Abstract
We have recently discovered that ester-stabilized phosphorus ylides, resulting from deprotonation of a phosphonium salt such as [Ph3PCH2COOR], can transfer protons across artificial and biological membranes. To create more effective cationic protonophores, we synthesized similar phosphonium salts with one ((heptyloxycarbonylmethyl)(p-tolyl)bromide) or two ((butyloxycarbonylmethyl)(3,5-xylyl)osphonium bromide) methyl substituents in the phenyl groups. The methylation enormously augmented both protonophoric activity of the ylides on planar bilayer lipid membrane (BLM) and uncoupling of mammalian mitochondria, which correlated with strongly accelerated flip-flop of their cationic precursors across the BLM.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Roman S Kirsanov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alisa A Panteleeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Konstantin G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Galina A Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Montecino-Garrido H, Sepúlveda M, Méndez D, Monroy-Cárdenas M, Alfaro S, González-Avendaño M, Caballero J, Urra FA, Araya-Maturana R, Fuentes E. Assessing mitochondria-targeted acyl hydroquinones on the mitochondrial platelet function and cytotoxic activity: Role of the linker length. Free Radic Biol Med 2023; 208:26-36. [PMID: 37516371 DOI: 10.1016/j.freeradbiomed.2023.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
INTRODUCTION The use of triphenylphosphonium cation (TPP+) linked to phenolic compounds by alkyl chains has a significant relevance as a mitochondrial delivery strategy in biomedicine because it affects mitochondrial bioenergetics in models of noncommunicable diseases such as cancer and cardiovascular-related conditions. Studies indicate that a long alkyl chain (10-12 carbon) increases the mitochondrial accumulation of TPP+-linked drugs. In contrast, other studies show that these compounds are consistently toxic to micromolar concentrations (as observed in platelets). In the present study, we evaluated the in vitro effect of three series of triphenylphosphonium-linked acyl hydroquinones derivates on the metabolism and function of human platelets using 3-9 carbons for the alkyl linker. Those were assessed to determine the role of the length of the alkyl chain linker on platelet toxicity. METHODS Human platelets were exposed in vitro to different concentrations (2-40 μM) of every compound; cellular viability, phosphatidylserine exposition, mitochondrial membrane potential (ΔΨm), intracellular calcium release, and intracellular ROS generation were assessed by flow cytometry. An in silico energetic profile was generated with Umbrella sampling molecular dynamics (MD). RESULTS AND CONCLUSIONS There was an increase in cytotoxic activity directly related to the length of the acyl chain and lipophilicity, as seen by three techniques, and this was consistent with a decrease in ΔΨm. The in silico energetic profiles point out that the permeability of the mitochondrial membrane may be involved in the cytotoxicity of phosphonium salts. This information may be relevant for the design of new TPP+ -based drugs with a safe cardiovascular profile.
Collapse
Affiliation(s)
- Héctor Montecino-Garrido
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Magdalena Sepúlveda
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Diego Méndez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Matías Monroy-Cárdenas
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca, Chile
| | - Sergio Alfaro
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, 3460000, Chile
| | - Mariela González-Avendaño
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, 3460000, Chile
| | - Julio Caballero
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, 3460000, Chile
| | - Félix A Urra
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Santiago, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca, Chile.
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
5
|
Mironov VF, Dimukhametov MN, Nemtarev AV, Pashirova TN, Tsepaeva OV, Voloshina AD, Vyshtakalyuk AB, Litvinov IA, Lyubina AP, Sapunova AS, Abramova DF, Zobov VV. Novel Mitochondria-Targeted Amphiphilic Aminophosphonium Salts and Lipids Nanoparticles: Synthesis, Antitumor Activity and Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2840. [PMID: 37947686 PMCID: PMC10649961 DOI: 10.3390/nano13212840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The creation of mitochondria-targeted vector systems is a new tool for the treatment of socially significant diseases. Phosphonium groups provide targeted delivery of drugs through biological barriers to organelles. For this purpose, a new class of alkyl(diethylAmino)(Phenyl) Phosphonium halides (APPs) containing one, two, or three diethylamino groups was obtained by the reaction of alkyl iodides (bromides) with (diethylamino)(phenyl)phosphines under mild conditions (20 °C) and high yields (93-98%). The structure of APP was established by NMR and XRD. A high in vitro cytotoxicity of APPs against M-HeLa, HuTu 80, PC3, DU-145, PANC-1, and MCF-7 lines was found. The selectivity index is in the range of 0.06-4.0 μM (SI 17-277) for the most active APPs. The effect of APPs on cancer cells is characterized by hyperproduction of ROS and depolarization of the mitochondrial membrane. APPs induce apoptosis, proceeding along the mitochondrial pathway. Incorporation of APPs into lipid systems (liposomes and solid lipid nanoparticles) improves cytotoxicity toward tumor cells and decrease toxicity against normal cell lines. The IC50s of lipid systems are lower than for the reference drug DOX, with a high SI (30-56) toward MCF-7 and DU-145. APPs exhibit high selective activity against Gram-positive bacteria S. aureus 209P and B. segeus 8035, including methicillin-resistant S. aureus (MRSA-1, MRSA-2), comparable to the activity of the fluoroquinolone antibiotic norfloxacin. A moderate in vivo toxicity in CD-1 mice was established for the lead APP.
Collapse
Affiliation(s)
- Vladimir F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Mudaris N. Dimukhametov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Andrey V. Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Olga V. Tsepaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Alexandra B. Vyshtakalyuk
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Igor A. Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Anna P. Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Anastasiia S. Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Dinara F. Abramova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Vladimir V. Zobov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| |
Collapse
|
6
|
Rokitskaya TI, Khailova LS, Korshunova GA, Antonenko YN. Efficiency of mitochondrial uncoupling by modified butyltriphenylphosphonium cations and fatty acids correlates with lipophilicity of cations: Protonophoric vs leakage mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184183. [PMID: 37286154 DOI: 10.1016/j.bbamem.2023.184183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
In order to determine the share of protonophoric activity in the uncoupling action of lipophilic cations a number of analogues of butyltriphenylphosphonium with substitutions in phenyl rings (C4TPP-X) were studied on isolated rat liver mitochondria and model lipid membranes. An increase in the rate of respiration and a decrease in the membrane potential of isolated mitochondria were observed for all the studied cations, the efficiency of these processes was significantly enhanced in the presence of fatty acids and correlated with the octanol-water partition coefficient of the cations. The ability of C4TPP-X cations to induce proton transport across the lipid membrane of liposomes loaded with a pH-sensitive fluorescent dye increased also with their lipophilicity and depended on the presence of palmitic acid in the liposome membrane. Of all the cations, only butyl[tri(3,5-dimethylphenyl)]phosphonium (C4TPP-diMe) was able to induce proton transport by the mechanism of formation of a cation-fatty acid ion pair on planar bilayer lipid membranes and liposomes. The rate of oxygen consumption by mitochondria in the presence of C4TPP-diMe increased to the maximum values corresponding to conventional uncouplers; for all other cations the maximum uncoupling rates were significantly lower. We assume that the studied cations of the C4TPP-X series, with the exception of C4TPP-diMe at low concentrations, cause nonspecific leak of ions through lipid model and biological membranes which is significantly enhanced in the presence of fatty acids.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Galina A Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
7
|
Ong HC, Coimbra JTS, Ramos MJ, Xing B, Fernandes PA, García F. Beyond the TPP + "gold standard": a new generation mitochondrial delivery vector based on extended PN frameworks. Chem Sci 2023; 14:4126-4133. [PMID: 37063789 PMCID: PMC10094279 DOI: 10.1039/d2sc06508h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Mitochondrial targeting represents an attractive strategy for treating metabolic, degenerative and hyperproliferative diseases, since this organelle plays key roles in essential cellular functions. Triphenylphosphonium (TPP+) moieties - the current "gold standard" - have been widely used as mitochondrial targeting vectors for a wide range of molecular cargo. Recently, further optimisation of the TPP+ platform drew considerable interest as a way to enhance mitochondrial therapies. However, although the modification of this system appears promising, the core structure of the TPP+ moiety remains largely unchanged. Thus, this study explored the use of aminophosphonium (PN+) and phosphazenylphosphonium (PPN+) main group frameworks as novel mitochondrial delivery vectors. The PPN+ moiety was found to be a highly promising platform for this purpose, owing to its unique electronic properties and high lipophilicity. This has been demonstrated by the high mitochondrial accumulation of a PPN+-conjugated fluorophore relative to its TPP+-conjugated counterpart, and has been further supported by density functional theory and molecular dynamics calculations, highlighting the PPN+ moiety's unusual electronic properties. These results demonstrate the potential of novel phosphorus-nitrogen based frameworks as highly effective mitochondrial delivery vectors over traditional TPP+ vectors.
Collapse
Affiliation(s)
- How Chee Ong
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - João T S Coimbra
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Maria J Ramos
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Bengang Xing
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Pedro A Fernandes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo Avda Julian Claveria 8 33006 Asturias Spain
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
8
|
Li Z, Tan J, Gao C, Lu Z, You J, Zhu JJ. Polarity-Ultrasensitive and Lipophilicity-Enhanced Structurally Modified Hemicyanine for Two-Color Staining to Reveal Cell Apoptosis during Chemotherapy. Anal Chem 2023; 95:2011-2019. [PMID: 36629754 DOI: 10.1021/acs.analchem.2c04515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Programmed cell death (PCD) is a precisely controlled physiological process to sustain tissue homeostasis. Even though the PCD pathways have been explicitly subdivided, the individual cell death process seems to synergistically operate to eliminate cells rather than separately execute signal transduction. Apoptosis is the dominant intracellular PCD subtype, which is intimately regulated and controlled by mitochondria, thus tracing mitochondrial actions could reveal the dynamic changes of apoptosis, which may provide important tools for screening preclinical therapeutic agents. Herein, we exploited an innovative fluorophore Cy496 based on the light-initiated cleavage reaction. Cy496 bears the typical D-π-A structure and serves as a versatile building block for chemosensor construction through flexible side chains. By regulating lipophilicity and basicity through bis-site substitution, we synthesized a series of fluorescence probes and screened a novel mitochondria-targeted ratiometric probe Cy1321, which can real-time evaluate the dynamic changes of mitochondrial micropolarity mediated by bis-cholesterol anchoring. Cy1321 has realized two-color quantification and real-time visualization of polarity fluctuations on chemotherapy agent (cisplatin)-induced apoptosis through flow cytometry and confocal imaging and also achieved the purpose of detecting mitochondria-related apoptosis at the level of tissues. It is envisioned that Cy1321 has sufficient capability as a promising and facile tool for the evaluation of apoptosis and contributing to therapeutic drug screening.
Collapse
Affiliation(s)
- Zan Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jiangkun Tan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Chunyu Gao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhihao Lu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
9
|
Rokitskaya TI, Aleksandrova EV, Korshunova GA, Khailova LS, Tashlitsky VN, Luzhkov VB, Antonenko YN. Membrane Permeability of Modified Butyltriphenylphosphonium Cations. J Phys Chem B 2022; 126:412-422. [PMID: 34994564 DOI: 10.1021/acs.jpcb.1c08135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The alkyltriphenylphosphonium (TPP) group is the most widely used vector targeted to mitochondria. Previously, the length of the alkyl linker was varied as well as structural modifications in the TPP phenyl rings to obtain the optimal therapeutic effect of a pharmacophore conjugated with a lipophilic cation. In the present work, we synthesized butyltriphenylphosphonium cations halogenated and methylated in phenyl rings (C4TPP-X) and measured electrical current through a planar lipid bilayer in the presence of C4TPP-X. The permeability of C4TPP-X varied in the range of 6 orders of magnitude and correlates well with the previously measured translocation rate constant for dodecyltriphenylphosphonium analogues. The partition coefficient of the butyltriphenylphosphonium analogues obtained by calculating the difference in the free energy of cation solvation in water and octane using quantum chemical methods correlates well with the permeability values. Using an ion-selective electrode, a lower degree of accumulation of analogues with halogenated phenyl groups was found on isolated mitochondria of rat liver, which is in agreement with their permeability decrease. Our results indicate the translocation of the butyltriphenylphosphonium cations across the hydrophobic membrane core as rate-limiting stage in the permeability process rather than their binding/release to/from the membrane.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Galina A Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vadim N Tashlitsky
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Victor B Luzhkov
- Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, acad. Semenov av. 1, Chernogolovka, Moscow Region 142432, Russia.,Department of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|