1
|
Barra ALC, Ullah N, Brognaro H, Gutierrez RF, Wrenger C, Betzel C, Nascimento AS. Structure and dynamics of the staphylococcal pyridoxal 5-phosphate synthase complex reveal transient interactions at the enzyme interface. J Biol Chem 2024; 300:107404. [PMID: 38782204 PMCID: PMC11237949 DOI: 10.1016/j.jbc.2024.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Infectious diseases are a significant cause of death, and recent studies estimate that common bacterial infectious diseases were responsible for 13.6% of all global deaths in 2019. Among the most significant bacterial pathogens is Staphylococcus aureus, accounting for more than 1.1 million deaths worldwide in 2019. Vitamin biosynthesis has been proposed as a promising target for antibacterial therapy. Here, we investigated the biochemical, structural, and dynamic properties of the enzyme complex responsible for vitamin B6 (pyridoxal 5-phosphate, PLP) biosynthesis in S. aureus, which comprises enzymes SaPdx1 and SaPdx2. The crystal structure of the 24-mer complex of SaPdx1-SaPdx2 enzymes indicated that the S. aureus PLP synthase complex forms a highly dynamic assembly with transient interaction between the enzymes. Solution scattering data indicated that SaPdx2 typically binds to SaPdx1 at a substoichiometric ratio. We propose a structure-based view of the PLP synthesis mechanism initiated with the assembly of SaPLP synthase complex that proceeds in a highly dynamic interaction between Pdx1 and Pdx2. This interface interaction can be further explored as a potentially druggable site for the design of new antibiotics.
Collapse
Affiliation(s)
- Angélica Luana C Barra
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil; Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany
| | - Najeeb Ullah
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany; Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Hévila Brognaro
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany
| | - Raissa F Gutierrez
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany; Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | |
Collapse
|
2
|
Stubbs J, Hornsey T, Hanrahan N, Esteban LB, Bolton R, Malý M, Basu S, Orlans J, de Sanctis D, Shim JU, Shaw Stewart PD, Orville AM, Tews I, West J. Droplet microfluidics for time-resolved serial crystallography. IUCRJ 2024; 11:237-248. [PMID: 38446456 PMCID: PMC10916287 DOI: 10.1107/s2052252524001799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Serial crystallography requires large numbers of microcrystals and robust strategies to rapidly apply substrates to initiate reactions in time-resolved studies. Here, we report the use of droplet miniaturization for the controlled production of uniform crystals, providing an avenue for controlled substrate addition and synchronous reaction initiation. The approach was evaluated using two enzymatic systems, yielding 3 µm crystals of lysozyme and 2 µm crystals of Pdx1, an Arabidopsis enzyme involved in vitamin B6 biosynthesis. A seeding strategy was used to overcome the improbability of Pdx1 nucleation occurring with diminishing droplet volumes. Convection within droplets was exploited for rapid crystal mixing with ligands. Mixing times of <2 ms were achieved. Droplet microfluidics for crystal size engineering and rapid micromixing can be utilized to advance time-resolved serial crystallography.
Collapse
Affiliation(s)
- Jack Stubbs
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Theo Hornsey
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Niall Hanrahan
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Luis Blay Esteban
- Universitat Carlemany, Avenida Verge de Canolich, 47, Sant Julia de Loria, Principat d’Andorra AD600, Spain
| | - Rachel Bolton
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Martin Malý
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Shibom Basu
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, Grenoble 38042, Cedex 9, France
| | - Julien Orlans
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble 38042, Cedex 9, France
| | - Daniele de Sanctis
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble 38042, Cedex 9, France
| | - Jung-uk Shim
- Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Ivo Tews
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Jonathan West
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|