1
|
Knight BJ, Grigolo TA, Tolchin ZA, Smith JM. Azine Dearomatization in Natural Product Total Synthesis. Chemistry 2025; 31:e202402413. [PMID: 39787324 DOI: 10.1002/chem.202402413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Since antiquity, alkaloid natural products have served as medicinal ingredients that still contribute as an inspiration for the development of novel therapeutics. For the synthetic chemist, much of the importance of natural products lies in their acting as a forcing-function for the invention of new synthetic strategies and tactics for molecular assembly. With this rich history in mind, it remains an important goal for chemists to build nitrogenous structures with greater efficiency, abiding by economies of synthesis. Nitrogenous aromatic feedstocks have been an intriguing starting point for the functionalization and construction of alkaloids for several decades, but recent advances in reaction design have opened new doors for leveraging their abundance in concise synthesis. Herein, advances in this area of synthetic ingenuity will be summarized with the aim of instructing chemists towards considering dearomatization as a strategic avenue for both target-oriented and diversity-oriented synthetic campaigns. Overall, syntheses are evaluated, compared, and contrasted to give a systematic overview of this continued area of research.
Collapse
Affiliation(s)
- Brian J Knight
- Department of Medicinal Chemistry, Asha Therapeutics, 3802 Spectrum Blvd. Suite 146, Tampa, FL, 33612, USA
| | - Thiago A Grigolo
- Department of Chemistry and Biochemistry, Laboroatories of Molecular Recognition, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32308, USA
| | - Zachary A Tolchin
- Department of Chemistry and Biochemistry, Laboroatories of Molecular Recognition, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32308, USA
| | - Joel M Smith
- Department of Chemistry and Biochemistry, Laboroatories of Molecular Recognition, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32308, USA
| |
Collapse
|
2
|
Sano K, Mori A, Okano K. Three-Component Synthesis of Multiply Functionalized 5,6-Dehydroisoquinuclidines through Dearomatization of Pyridine. J Org Chem 2024; 89:17834-17843. [PMID: 39587924 DOI: 10.1021/acs.joc.4c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
A three-component synthesis of multiply functionalized 5,6-dehydroisoquinuclidines is described. After the formation of an N-alkylpyridinium salt, Grignard addition led to the formation of the corresponding 1,2-dihydropyridine bearing an alkyl, alkene, aryl, or alkynyl group. Subsequent Diels-Alder reaction with a dienophile provided functionalized dehydroisoquinuclidines in high yields (up to 93%) with endo selectivities (73:27 to >99:1). This reaction was applicable to the synthesis of an N-(4-methoxybenzyl)pyridinium salt, where the 4-methoxybenzyl group was switched to a benzyloxycarbonyl group after the formation of the dehydroisoquinuclidine.
Collapse
Affiliation(s)
- Kenshin Sano
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Atsunori Mori
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kentaro Okano
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
3
|
Li YX, Liu QY, Zhang Y, Liu MM, Liu X, Shen MH, Wang FM, Xu HD. α-( N-Alkyl-N-heteroarenium)-α-diazoacetates: synthesis and reactivity of a novel class of 'onium' diazo compounds. Org Biomol Chem 2024; 22:8109-8113. [PMID: 39291542 DOI: 10.1039/d4ob01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Treatment of alkyl α-(N-heteroaryl)-α-diazoacetates with alkylating reagents affords diazoacetate N-heteroarenium salts. These novel 'onium' diazo compounds are mostly yellow solids, displaying increased thermal and acid stability. Their tetrafluoroborates undergo rhodium catalyzed [2 + 1] and Doyle-Kirmse reactions under mild conditions, suggesting the N-quaternization an effective means of elimination of N-coordination caused catalyst toxicity.
Collapse
Affiliation(s)
- Ya-Xi Li
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Quan-Yun Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Yi Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Miao-Miao Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Xiaoqian Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Mei-Hua Shen
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Fang-Ming Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
4
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
5
|
Ortiz KG, Dotson JJ, Robinson DJ, Sigman MS, Karimov RR. Catalyst-Controlled Enantioselective and Regiodivergent Addition of Aryl Boron Nucleophiles to N-Alkyl Nicotinate Salts. J Am Chem Soc 2023; 145:11781-11788. [PMID: 37205733 PMCID: PMC10363019 DOI: 10.1021/jacs.3c03048] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dihydropyridines are versatile building blocks for the synthesis of pyridines, tetrahydropyridines, and piperidines. Addition of nucleophiles to activated pyridinium salts allows synthesis of 1,2-, 1,4-, or 1,6-dihydropyridines; however, this process often leads to a mixture of constitutional isomers. Catalyst-controlled regioselective addition of nucleophiles to pyridiniums has the potential to solve this problem. Herein, we report that the regioselective addition of boron-based nucleophiles to pyridinium salts can be accomplished by the choice of a Rh catalyst.
Collapse
Affiliation(s)
- Kacey G Ortiz
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Jordan J Dotson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Donovan J Robinson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Rashad R Karimov
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
6
|
Nilova A, Mannchen MD, Noel AN, Semenova E, Grenning AJ. Vicinal stereocenters via asymmetric allylic alkylation and Cope rearrangement: a straightforward route to functionally and stereochemically rich heterocycles. Chem Sci 2023; 14:2755-2762. [PMID: 36908968 PMCID: PMC9993902 DOI: 10.1039/d2sc07021a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
An asymmetric allylic alkylation/Cope rearrangement (AAA/[3,3]) capable of stereoselectively constructing vicinal stereocenters has been developed. Strategically integrated 4-methylation on the 3,3-dicyano-1,5-diene controls stereoselectivity and drives Cope rearrangement equilibrium in the forward direction. The AAA/[3,3] sequence rapidly converts abundant achiral and racemic starting materials into valuable (hetero)cycloalkane building blocks bearing significant functional and stereochemical complexity, highlighting the value of (hetero)cyclohexylidenemalononitriles as launching points for complex heterocycle synthesis. On this line, the resulting alkylidenemalononitrile moiety can be readily converted into amides via Hayashi-Lear amidation to ultimately yield amido-piperidines, tropanes, and related scaffolds with 3-5 stereocenters and drug-like functionality.
Collapse
Affiliation(s)
- Aleksandra Nilova
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| | - Michael D Mannchen
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| | - Abdias N Noel
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| | - Evgeniya Semenova
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| | - Alexander J Grenning
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| |
Collapse
|
7
|
Knight BJ, Harbit RC, Smith JM. Six-Step Synthesis of (±)-Lysergic Acid. J Org Chem 2023; 88:2158-2165. [PMID: 36716216 DOI: 10.1021/acs.joc.2c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article describes a concise synthesis of lysergic acid from simple aromatic precursors. The successful strategy relies on the coupling, dearomatization, and cyclization of a halopyridine with a 4-haloindole derivative in 6 total synthetic steps from commercial starting materials. In addition to highlighting the advantages of employing dearomative retrosynthetic analysis, the design is practical and anticipated to enable the synthesis of novel neuroactive compounds as exemplified by the synthesis of a novel natural product derivative, 12-chlorolysergic acid.
Collapse
Affiliation(s)
- Brian J Knight
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Ryan C Harbit
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Joel M Smith
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
8
|
Grigolo TA, Smith JM. Regiodivergent Asymmetric Pyridinium Additions: Mechanistic Insight and Synthetic Applications. Chemistry 2022; 28:e202202813. [PMID: 36098490 DOI: 10.1002/chem.202202813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 12/14/2022]
Abstract
A practical protocol for the first regiodivergent asymmetric addition of aryl and alkenyl organometallic reagents to substituted N-alkyl pyridinium heterocycles is described. The couplings proceed with high regiochemical and stereochemical selectivities, and provide access to chiral 1,2,3- and 1,3,4-trisubstituted dihydropyridine products, controlled by judicious choice of nitrogen activating agent. To this end, a correlation was found between the parameterized size of the activating group and the C2/C4 regioselectivity in the couplings. The utility of the described chemistry was demonstrated in two concise asymmetric syntheses of (+)-N-methylaspidospermidine and (-)-paroxetine.
Collapse
Affiliation(s)
- Thiago A Grigolo
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, 32306 Florida, USA
| | - Joel M Smith
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, 32306 Florida, USA
| |
Collapse
|
9
|
Zhu Z, Boger DL. Acyclic and Heterocyclic Azadiene Diels-Alder Reactions Promoted by Perfluoroalcohol Solvent Hydrogen Bonding: Comprehensive Examination of Scope. J Org Chem 2022; 87:14657-14672. [PMID: 36239452 PMCID: PMC9637783 DOI: 10.1021/acs.joc.2c02000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, the first use of perfluoroalcohol H-bonding in accelerating acyclic azadiene inverse electron demand cycloaddition reactions is described, and its use in the promotion of heterocyclic azadiene cycloaddition reactions is generalized through examination of a complete range of azadienes. The scope of dienophiles was comprehensively explored; relative reactivity trends and solvent compatibilities were established with respect to the dienophile as well as azadiene; H-bonding solvent effects that lead to rate enhancements, yield improvements, and their impact on regioselectivity and mode of cycloaddition are defined; new viable diene/dienophile reaction partners in the cycloaddition reactions are disclosed; and key comparison rate constants are reported. The perfluoroalcohol effectiveness at accelerating an inverse electron demand Diels-Alder cycloaddition is directly correlated with its H-bond potential (pKa). Not only are the reactions of electron-rich dienophiles accelerated but those of strained and even unactivated alkenes and alkynes are improved, including representative bioorthogonal click reactions.
Collapse
Affiliation(s)
- Zixi Zhu
- Department of Chemistry and the Skaggs Institute for Chemical-Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and the Skaggs Institute for Chemical-Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Pareek A, Kalek M. Regioselective Dearomatization of N‐Alkylquinolinium and Pyridinium Salts under Morita‐Baylis‐Hillman Conditions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
O'Brien L, Argent SP, Ermanis K, Lam HW. Gold(I)-Catalyzed Nucleophilic Allylation of Azinium Ions with Allylboronates. Angew Chem Int Ed Engl 2022; 61:e202202305. [PMID: 35239987 PMCID: PMC9314030 DOI: 10.1002/anie.202202305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/21/2022]
Abstract
Gold(I)-catalyzed nucleophilic allylations of pyridinium and quinolinium ions with various allyl pinacolboronates are reported. The reactions are completely selective with respect to the site of the azinium ion that is attacked, to give various functionalized 1,4-dihydropyridines and 1,4-dihydroquinolines. Evidence suggests that the reactions proceed through nucleophilic allylgold(I) intermediates formed by transmetalation from allylboronates. Density functional theory (DFT) calculations provided mechanistic insight.
Collapse
Affiliation(s)
- Luke O'Brien
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Stephen P. Argent
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Kristaps Ermanis
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| |
Collapse
|
12
|
Robinson DJ, Ortiz KG, O’Hare NP, Karimov RR. Dearomatization of Heteroarenium Salts with ArBpin Reagents. Application to the Total Synthesis of a Nuphar Alkaloid. Org Lett 2022; 24:3445-3449. [DOI: 10.1021/acs.orglett.2c00976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Donovan J. Robinson
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Kacey G. Ortiz
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Nathan P. O’Hare
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Rashad R. Karimov
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| |
Collapse
|
13
|
Zheng S, Wang D, Huang M, Yu P. Rapid Generation of Tetrahydropyridines and Tetrahydroquinolines by Dearomative Cyanation/Grignard Addition. Chem Asian J 2022; 17:e202200077. [PMID: 35322570 DOI: 10.1002/asia.202200077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/15/2022] [Indexed: 11/06/2022]
Abstract
A rapid, practical and scalable method for the reductant and tansition-metal-free synthesis of a variety of novel 2,4-disubstituted tetrahydropyridines and tetrahydroquinolines is disclosed. The method is based upon dearomative functionalization of pyridines or quinolines to generate amino nitrile intermediates as masked iminium ions, which then reacted rapidly with various Grignard reagents in complete stereocontrol.
Collapse
Affiliation(s)
- Shixin Zheng
- Tianjin University of Science and Technology, Department of Chemistry, Tianjin, CHINA
| | - Dong Wang
- Xinjiang University, College of Chemistry, No. 777, Hua Rui Street, Shui Mo Gou District, 830046, Urumqi, CHINA
| | - Mindong Huang
- Tianjin University of Science and Technology, Department of Chemistry, Tianjin, CHINA
| | - Peng Yu
- Tianjin University of Science and Technology, Department of Chemistry, Tianjin, CHINA
| |
Collapse
|
14
|
O'Brien L, Argent SP, Ermanis K, Lam HW. Gold(I)‐Catalyzed Nucleophilic Allylation of Azinium Ions with Allylboronates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luke O'Brien
- University of Nottingham School of Chemistry UNITED KINGDOM
| | | | | | - Hon Wai Lam
- University of Nottingham The GSK Carbon Neutral Laboratories for Sustainable Chemistry Jubilee CampusTriumph Road NG7 2TU Nottingham UNITED KINGDOM
| |
Collapse
|
15
|
Nallagonda R, Musaev DG, Karimov RR. Light-Promoted Dearomative Cross-Coupling of Heteroarenium Salts and Aryl Iodides via Nickel Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajender Nallagonda
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Rashad R. Karimov
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
16
|
McConnell DL, Blades AM, Rodrigues DG, Keyes PV, Sonberg JC, Anthony CE, Rachad S, Simone OM, Sullivan CF, Shapiro JD, Williams CC, Schafer BC, Glanzer AM, Hutchinson HL, Thayaparan AB, Krevlin ZA, Bote IC, Haffary YA, Bhandari S, Goodman JA, Majireck MM. Synthesis of Bench-Stable N-Quaternized Ketene N, O-Acetals and Preliminary Evaluation as Reagents in Organic Synthesis. J Org Chem 2021; 86:13025-13040. [PMID: 34498466 DOI: 10.1021/acs.joc.1c01764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
N-Quaternized ketene N,O-acetals are typically an unstable, transient class of compounds most commonly observed as reactive intermediates. In this report, we describe a general synthetic approach to a variety of bench-stable N-quaternized ketene N,O-acetals via treatment of pyridine or aniline bases with acetylenic ethers and an appropriate Brønsted or Lewis acid (triflic acid, triflimide, or scandium(III) triflate). The resulting pyridinium and anilinium salts can be used as reagents or synthetic intermediates in multiple reaction types. For example, N-(1-ethoxyvinyl)pyridinium or anilinium salts can thermally release highly reactive O-ethyl ketenium ions for use in acid catalyst-free electrophilic aromatic substitutions. N-(1-Ethoxyvinyl)-2-halopyridinium salts can be employed in peptide couplings as a derivative of Mukaiyama reagents or react with amines in nucleophilic aromatic substitutions under mild conditions. These preliminary reactions illustrate the broad potential of these currently understudied compounds in organic synthesis.
Collapse
Affiliation(s)
- Danielle L McConnell
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Alisha M Blades
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Danielle Gomes Rodrigues
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Phoebe V Keyes
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Justin C Sonberg
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Caitlin E Anthony
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Sofia Rachad
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Olivia M Simone
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Caroline F Sullivan
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Jonathan D Shapiro
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Christopher C Williams
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Benjamin C Schafer
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Amy M Glanzer
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Holly L Hutchinson
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Ashley B Thayaparan
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Zoe A Krevlin
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Isabella C Bote
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Yasin A Haffary
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Sambat Bhandari
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Jack A Goodman
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Max M Majireck
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| |
Collapse
|
17
|
Grigolo TA, Subhit AR, Smith JM. Regioselective Asymmetric Alkynylation of N-Alkyl Pyridiniums. Org Lett 2021; 23:6703-6708. [PMID: 34474575 DOI: 10.1021/acs.orglett.1c02276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disclosed in this Letter is a novel asymmetric addition of alkynyl nucleophiles to N-alkylpyridinium electrophiles. The coupling is effected under mild and simple reaction conditions, affording dihydropyridine products with complete regiochemical and stereochemical control. In addition to several manipulations of the dihydropyridine products, the utility of this transformation is demonstrated through a concise, dearomative, and asymmetric synthesis of (+)-lupinine, a natural acetylcholine esterase inhibitor.
Collapse
Affiliation(s)
- Thiago A Grigolo
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Ariana R Subhit
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Joel M Smith
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|