1
|
Mujahid M, Vara V, Arshad U, Gamidi RK, Muthukrishnan M. Cu-Catalyzed Multicomponent Reaction of Arylhydrazines with β-Ketoesters and TBN: One-Pot Access to N2-Aryl 1,2,3-Triazole-1-Oxides. J Org Chem 2024; 89:16990-16998. [PMID: 39540867 DOI: 10.1021/acs.joc.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We report a copper-catalyzed one-pot, multicomponent strategy for the convenient synthesis of N2-aryl 1,2,3-triazole-1-oxides using arylhydrazines, β-ketoesters, and tert-butyl nitrite. This mild and simple reaction proceeds in an atom-economic manner with broad substrate scope, affording a variety of N2-aryl 1,2,3-triazole-1-oxide derivatives. Other salient features of the reaction are good functional group tolerance, scalability, and product diversification.
Collapse
Affiliation(s)
- Mohammad Mujahid
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India
- Department of Chemistry, Shri. Dr. R. G. Rathod Arts & Science College, Murtizapur 444107, India
| | - Vijay Vara
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Usman Arshad
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Rama Krishna Gamidi
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India
| | - M Muthukrishnan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
3
|
Li T, Sun Z, Zhang S, Ma Q, Chen Y, Yuan Y, Jia X. Single-Electron Reduction of "Push-Pull" C-C Single Bond and Decyanation Using Tertiary Amines as the Organic Electron Donor. J Org Chem 2024; 89:2516-2524. [PMID: 38319086 DOI: 10.1021/acs.joc.3c02542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Using commercially available tertiary amines as an organic electron donor (OED), the reduction of "push-pull" C-C single bond and reductive decyanation of tetrahydroisoquinolines were realized. These reactions exhibited higher reaction efficiency and better functional group tolerance compared with those of metallic reductants, and the mechanistic study indicated that a radical intermediate was involved in the reduction of the C-C single bond, which provides a new way to the OED-enabled mild reduction.
Collapse
Affiliation(s)
- Tong Li
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Zheng Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
- Economic Development Bureau, Jiangsu Hangji Hi-tech Industrial Development Zone, Yangzhou 225111, Jiangsu, China
| | - Shuwei Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Qiyuan Ma
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Yuqin Chen
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Yu Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Xiaodong Jia
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| |
Collapse
|
4
|
Chen Y, Zhang S, Li T, Ma Q, Yuan Y, Jia X. Oxidants Controlled C-H Bond Functionalization of N-Aryltetrahydroisoquinolines: The Construction of the Quaternary Carbon Center and Cleavage of the C-N Bond. Chemistry 2024; 30:e202303151. [PMID: 37875461 DOI: 10.1002/chem.202303151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Initiated by triarylamine radical cation salt (TBPA), the direct C-H bond functionalization of α-N-aryltetrahydroisoquinoline esters was smoothly realized, giving a series of α-hydroxylated derivatives with a quaternary carbon center in good yields. Differently, in the presence of tert-butyl nitrite (TBN), the C-N single bond was cleaved to keto esters. The mechanistic study revealed that these reactions were mediated by a similar mechanism, in which the N-nitrosation might provide a driving force to the C-N bond cleavage.
Collapse
Affiliation(s)
- Yuqin Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Qiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| |
Collapse
|
5
|
Sun Z, Zhang S, Ma Q, Li Y, Ding H, Yuan Y, Jia X. Tert-Butyl Nitrite-initiated C-N Bond Cleavage of 1-Nitromethyl-N-aryltetrahydroisoquinolines: Synthesis of Furoxans with N-NO Skeleton. Chem Asian J 2023; 18:e202201265. [PMID: 36655414 DOI: 10.1002/asia.202201265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
A series of furoxan derivatives with N-nitroso groups were synthesized in good yields by TBN initiated radical sp3 C-N bond cleavage of 1-nitromethyl-N-aryltetrahydroisoquinolines. This reaction grafts the biologically important furoxan skeleton and N-nitroso group into on molecule, greatly improving the molecular complexity in one step transformation. The mechanistic study shows that this reaction is mediated by the in situ generated α-carbonyl nitrile oxide, which is afforded by TBN promoted C-N bond cleavage.
Collapse
Affiliation(s)
- Zheng Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Qiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Yuemei Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Han Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
6
|
Ding H, Zhang S, Sun Z, Ma Q, Li Y, Yuan Y, Jia X. C-H Bond Activation Relay (CHAR) of Proline Ester Derivatives Promoted by In Situ Triarylamine Radical Cation: Selective Synthesis of 4-Bromopyrrole Derivatives. Chemistry 2023; 29:e202203654. [PMID: 36727278 DOI: 10.1002/chem.202203654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023]
Abstract
Using the in situ generated triarylamine radical cation as an initiator, the sp3 C-H bond of proline esters was smoothly oxidized and brominated through C-H activation relay (CHAR), giving a series of 4-bromopyrroles in good yields with high regioselectivity. The mechanistic study revealed that the oxidation of the active C-H bond initiated the followed 1,5-HAT and bromination, which provides a new method to realize the functionalization of the remote C-H bond.
Collapse
Affiliation(s)
- Han Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Zheng Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Qiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Yuemei Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
7
|
Ding H, Zhang S, Sun Z, Ma Q, Li Y, Yuan Y, Jia X. Tris(4-bromophenyl)aminium Hexachloroantimonate as a "Waste-Utilized"-Type Initiator-Promoted C-H Chlorination via C-H Activation Relay: Synthesis of Chlorinated Pyrroles. J Org Chem 2022; 87:15139-15151. [PMID: 36398528 DOI: 10.1021/acs.joc.2c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using tris(4-bromophenyl)aminium hexachloroantimonate as a "waste-utilized"-type initiator, the aerobic oxidation of the sp3 C-H bond of proline esters was realized via C-H activation relay, giving a series of halogenated pyrroles in high yields. The mechanistic study revealed that the counterion, SbCl6-, was involved in the radical chlorination process, which provides a new way to understand the role of the counterions.
Collapse
Affiliation(s)
- Han Ding
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shuwei Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Zheng Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Qiyuan Ma
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yuemei Li
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yu Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xiaodong Jia
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
8
|
Ma Q, Zhang S, Yuan Y, Ding H, Li Y, Sun Z, Yuan Y, Jia X. Multifunctionalization of sp3 C‐H Bond of Tetrahydroisoquinolines through C‐H Activation Relay (CHAR) Using α‐Cyanotetrahydroisoquinolines as the Starting Materials. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiyuan Ma
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Shuwei Zhang
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yuan Yuan
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Han Ding
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yuemei Li
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Zheng Sun
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yu Yuan
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Xiaodong Jia
- Yangzhou University School of Chemistry and Chemical Engineering, Yangzhou University 180 Siwangting Road 225002 Yangzhou CHINA
| |
Collapse
|
9
|
Su Y, Zhang S, Yuan Y, Ma Q, Sun Z, Yuan Y, Jia X. SbCl 3 initiated conjunctive C-H bond functionalization and carbochlorination between glycine esters and methylenecyclopropanes (MCPs). Chem Commun (Camb) 2021; 57:9878-9881. [PMID: 34494034 DOI: 10.1039/d1cc03744g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the presence of dioxygen, an antimony trichloride enabled conjunctive sp3 C-H bond functionalization and carbochlorination of glycines was realized, providing a series of chlorinated quinolines in high yields. The mechanistic study shows that the antimony(V) species might be involved in the oxidation of the sp3 C-H bond and is followed by carbochlorination through a radical intermediate.
Collapse
Affiliation(s)
- Yichun Su
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China.
| | - Shuwei Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China.
| | - Yuan Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China.
| | - Qiyuan Ma
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China.
| | - Zheng Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China.
| | - Yu Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China.
| | - Xiaodong Jia
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China.
| |
Collapse
|