1
|
Huang F, Li M, Jiang Q, Huang Q, Zhang S, Wei H, Li Y, Yu Y, Zhao L, Baell J. Platform of Oxidative Transformation of α-Methyl Secondary Enaminones toward Tetrahydropyridines. J Org Chem 2025; 90:4186-4201. [PMID: 40109158 DOI: 10.1021/acs.joc.4c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
In this paper, the application of α-methyl secondary enaminones in the synthesis of tetrahydrofuropyridines is described. The key step of the methodology is the in situ generation of 1-azadiene from oxidation of α-methyl secondary enaminone, followed by a subsequent inverse-electron-demand hetero-Diels-Alder reaction proceeded to give the desired product. Mechanistic studies and density functional theory (DFT) calculations revealed the detailed reaction pathway. Gram-scale preparation experiments and further transformation of the product demonstrate the potential applicability of this method. In addition, the amide derivatives could be obtained by employing β-methyl secondary enaminones as substrates under similar oxidative conditions. The present work opens a new window to the application of rarely reported α-methyl secondary enaminones.
Collapse
Affiliation(s)
- Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Mingrui Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Quanbin Jiang
- School of Chemistry, Sun Yat-Sen University, GuangZhou 510006, P. R. China
| | - Qingyu Huang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Shiyu Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Heping Wei
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yufeng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jonathan Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
2
|
Wang E, Luo J, Zhang L, Zhang J, Jiang Y. Copper-Catalyzed Oxidative [3 + 2] Cycloaddition of Enamines and Pyridotriazoles toward Indolizines. Org Lett 2024; 26:1249-1254. [PMID: 38305700 DOI: 10.1021/acs.orglett.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
An efficient copper catalytic system has been established for the synthesis of highly functional indolizines through oxidative [3 + 2] cycloaddition of enamines and pyridotriazoles. This modular platform is compatible with a broad range of functional groups, including natural and complex skeletons, allowing for late-stage modifications. It features a step-economical, highly regioselective, and easy-handling procedure and has been applied in constructing small molecules of potent activity toward inhibiting the VEGF-NRP1 interaction through a one-pot reaction of pyridotriazoles, amines, and aldehydes.
Collapse
Affiliation(s)
- Enfu Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiangbin Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Luoman Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yaojia Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Ahmed J, Haug GC, Nguyen VD, Porey A, Trevino R, Larionov OV. Catalytic Dienylation: An Emergent Strategy for the Stereoselective Construction of Conjugated Dienes and Polyenes. SYNTHESIS-STUTTGART 2023; 55:1642-1651. [PMID: 37457884 PMCID: PMC10348707 DOI: 10.1055/a-1924-2564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Stereoselective construction of conjugated dienes and polyenes has remained an enduring synthetic problem, due to the central roles they play in natural product synthesis, methodology, and medicine. This review focuses on the recent developments in dienylation as an emerging strategy for the direct installation of unsaturated four carbon atom units of conjugated π-systems, outlining the regio- and stereoselectivity, as well as the synthetic scope of reactions with various dienylating reagents and the mechanistic implications of the catalytic cross-coupling processes that are used to enable dienylation.
Collapse
Affiliation(s)
- Jasimuddin Ahmed
- Department of Chemistry, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Graham C Haug
- Department of Chemistry, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Viet D Nguyen
- Department of Chemistry, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Arka Porey
- Department of Chemistry, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Ramon Trevino
- Department of Chemistry, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Oleg V Larionov
- Department of Chemistry, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
4
|
Song W, Liu Y, Yan N, Wan JP. Tunable Key [3 + 2] and [2 + 1] Cycloaddition of Enaminones and α-Diazo Compounds for the Synthesis of Isomeric Isoxazoles: Metal-Controlled Selectivity. Org Lett 2023; 25:2139-2144. [PMID: 36946543 DOI: 10.1021/acs.orglett.3c00636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The three-component reactions of enaminones, α-diazo esters/ketones, and t-butyl nitrite (TBN) for the switchable synthesis of isomeric isoxazoles have been realized. The catalysis with Cu(II) salt provides 3,4-disubsituted isoxazoles via [3 + 2] cycloaddition. On the other hand, the catalysis of Ag(I) with identical substrates leads to isomeric isoxazoles with reversed C3 and C4 substitution based on a key [2 + 1] cycloaddition.
Collapse
Affiliation(s)
- Wenli Song
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Nan Yan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| |
Collapse
|
5
|
Wu W, Fan S, Wu X, Fang L, Zhu J. Cobalt Homeostatic Catalysis for Coupling of Enaminones and Oxadiazolones to Quinazolinones. J Org Chem 2023; 88:1945-1962. [PMID: 36705660 DOI: 10.1021/acs.joc.2c01934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transition metal catalysis has revolutionized modern synthetic chemistry for its diverse modes of coordination reactivity. However, this versatility in reactivity is also the predominant cause of catalyst deactivation, a persisting issue that can significantly compromise its synthetic value. Homeostatic catalysis, a catalytic process that can sustain its productive catalytic cycle even when chemically disturbed, is proposed herein as an effective tactic to address the challenge. In particular, a cobalt homeostatic catalysis process has been developed for the water-tolerant coupling of enaminones and oxadiazolones to quinazolinones. Dynamic covalent bonding serves as a mechanistic handle for the preferred buffering of water onto enaminone and reverse exchange by a released secondary amine, thus securing reversible entry into cobalt's dormant and active states for productive catalysis. Through this homeostatic catalysis mode, a broad structural scope has been achieved for quinazolinones, enabling further elaboration into distinct pharmaceutically active agents.
Collapse
Affiliation(s)
- Weiping Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Shuaixin Fan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Xuan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Lili Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Chen J, Han J, Zhang J, Li L, Zhang Z, Yang Y, Jiang Y. Rhodium/Amine Dual Catalytic System for Reassembling C≡C Bonds of Conjugated Alkynes with Cyclopropenes via Cutting/Insertion Cascade. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jie Chen
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiabin Han
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian Zhang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ling Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yanhui Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yaojia Jiang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Wu W, Wu X, Fan S, Zhu J. Rh(III)-Catalyzed Enaminone-Directed C-H Coupling with Diazodicarbonyls for Skeleton-Divergent Synthesis of Isocoumarins and Naphthalenes. Org Lett 2022; 24:7850-7855. [PMID: 36260610 DOI: 10.1021/acs.orglett.2c03288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diversity-oriented synthesis is tremendously useful for expanding the explorable chemical space but restricted by the limited available toolbox of skeleton-diversification chemistry. We report herein Rh(III)-catalyzed coupling of enaminones and diazodicarbonyls for skeleton-divergent synthesis of isocoumarins and naphthalenes. The diazodicarbonyl ring size and pH dependence of the skeleton-forming process demonstrates the achievement of both substrate- and reagent-controlled skeletal diversity generation in a single type of system. An intriguing C-C bond cleavage reactivity is critical for enabling facile synthetic access to isocoumarins.
Collapse
Affiliation(s)
- Weiping Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Xuan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Shuaixin Fan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Ying J, Liu T, Liu Y, Wan JP. Base-Promoted Annulative Difluoromethylenation of Enaminones with BrCF 2CO 2Et toward 2,2-Difluorinated 2,3-Dihydrofurans. Org Lett 2022; 24:2404-2408. [PMID: 35302379 DOI: 10.1021/acs.orglett.2c00671] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A practical method for the synthesis of 2,2-difluorinated 2,3-dihydrofurans has been established via the [4 + 1] annulation of enaminones and BrCF2CO2Et with Na2CO3 promotion. This new protocol does not employ any transition metal reagent and enables the annulative difluoromethylation by the partial cleavage of the C═C double bond. In addition, the further treatment with hydrochloric acid in one pot leads to β-keto enoic acids (4-oxo-2-butenoic acids) via a formal enaminone C-N carboxylation.
Collapse
Affiliation(s)
- Jinbiao Ying
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Ting Liu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yunyun Liu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
9
|
Wang F, Fu R, Chen J, Rong J, Wang E, Zhang J, Zhang Z, Jiang Y. Metal-free synthesis of gem-difluorinated heterocycles from enaminones and difluorocarbene precursors. Chem Commun (Camb) 2022; 58:3477-3480. [PMID: 35191446 DOI: 10.1039/d2cc00383j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A cascade strategy to synthesise gem-difluorinated 2H-furans from reactions of BrCF2CO2Et with enaminones has been described. The reactions tolerate a wide variety of functional groups under metal-free conditions. An active aminocyclopropane is proposed to be a key intermediate through the cyclopropanation of difluorocarbene with enaminones, which further triggers a regioselective C-C bond cleavage in situ to afford the corresponding gem-difluorinated 2H-furans.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Rui Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Jie Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China. .,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jiaxin Rong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Enfu Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jian Zhang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China. .,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
10
|
Fu L, Wan JP, Zhou L, Liu Y. Copper-catalyzed C-H/N-H annulation of enaminones and alkynyl esters for densely substituted pyrrole synthesis. Chem Commun (Camb) 2022; 58:1808-1811. [PMID: 35040446 DOI: 10.1039/d1cc06768k] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, the copper-catalyzed annulation of enaminones with alkynyl esters for the facile synthesis of different pyrroles with a 2,3,4,5-tetrasubstituted structure has been developed. With Cu(OAc)2 as the only catalyst, the tunable synthesis of 2-vinyl and 2,3-dicarboxyl-functionalized pyrroles has been achieved by using terminal and internal alkynyl esters, respectively. The synthesis of 2-vinyl pyrroles represents the first example accessing 2-vinyl substituted pyrroles via direct cascade reactions involving vinylation and pyrrole ring formation.
Collapse
Affiliation(s)
- Leiqing Fu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China. .,College of Chemistry and Bio-Engineering, Yichun University, Yichun, Jiangxi 336000, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Liyun Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| |
Collapse
|
11
|
Chen J, Han J, Wu T, Zhang J, Li M, Xu Y, Zhang J, Jiao Y, Yang Y, Jiang Y. Stereoselective Cyclopropanation of Enamides via C―C Bond Cleavage of Cyclopropenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00091a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work describes a straightforward protocol for the stereoselective synthesis of vinylcyclopropylamides in high E/Z and syn/anti ratios by cyclopropanation of N-tosyl substituted enamides with cyclopropenes in the presence of...
Collapse
|
12
|
Cui H, Xu G, Zhu J, Sun J. Rhodium-Catalyzed Dearomative Rearrangement of 2-Oxypyridines with Cyclopropenes: Access to N-Alkylated 2-Pyridones. Org Chem Front 2022. [DOI: 10.1039/d1qo01937f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rhodium-catalyzed dearomative O-to-N rearrangement reaction of 2-oxypyridines has been developed by using cyclopropenes as the carbene precursors. This protocol features broad substrate scope and mild reaction conditions, providing a...
Collapse
|
13
|
Liu T, Wan JP, Liu Y. Metal-free enaminone C-N bond cyanation for the stereoselective synthesis of ( E)- and ( Z)-β-cyano enones. Chem Commun (Camb) 2021; 57:9112-9115. [PMID: 34498638 DOI: 10.1039/d1cc03292e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly practical method for C-CN bond formation by C-N bond cleavage on enaminones leading to the efficient synthesis of β-cyano enones is developed. The reactions take place efficiently to provide (E)-β-cyano enones with only a molecular iodine catalyst. In addition, the additional employment of oxalic acid enables the selective synthesis of (Z)-β-cyano enones.
Collapse
Affiliation(s)
- Ting Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| |
Collapse
|