1
|
Chen YC, Cheng YP, Liu CY, Wang WC, Wang TM, Lai CY, Guo JW. Sakuranetin modulates IL-17A-related inflammation and enhances skin barrier function in an imiquimod-induced psoriasis model. Biomed Pharmacother 2025; 186:118035. [PMID: 40209307 DOI: 10.1016/j.biopha.2025.118035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025] Open
Abstract
Sakuranetin, a methoxylated flavanone with known anti-inflammatory and antioxidant properties, has yet to be explored for its therapeutic potential in psoriasis treatment. This study evaluates its efficacy in an imiquimod-induced psoriasis-like murine model, focusing on both immune modulation and skin barrier restoration. Topical administration of sakuranetin significantly attenuated psoriatic inflammation, with high-dose treatment achieving comparable efficacy to desoximetasone. RNA sequencing and qPCR validation revealed that sakuranetin modulates keratinization, cornified envelope formation, and kallikrein-related peptidase activity, suggesting its role in epidermal homeostasis. Notably, sakuranetin selectively downregulated IL-17A while maintaining IL-17F expression, supporting a targeted immunomodulatory effect. Additionally, sakuranetin upregulated KRT1, KRT16, KLK7, Sprr2f, and Wfdc18 while downregulating Sprr2k and Sprr3, indicating a refined regulation of skin barrier proteins. The observed upregulation of Tslp suggests a potential role in epidermal repair mechanisms. These findings highlight sakuranetin as a novel, plant-derived therapeutic candidate with dual anti-inflammatory and skin barrier-enhancing properties, providing a potential corticosteroid-sparing approach for long-term psoriasis management.
Collapse
Affiliation(s)
- Yung-Chuan Chen
- Department of Pediatrics, Cathay General Hospital, Taipei 10630, Taiwan.
| | - Yu-Ping Cheng
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; Department of Dermatology, Cathay General Hospital, Taipei 10630, Taiwan.
| | - Chih-Yi Liu
- Division of Pathology, Sijhih Cathay General Hospital, Taipei 22174, Taiwan.
| | - Wei-Chin Wang
- Department of Pediatrics, Cathay General Hospital, Taipei 10630, Taiwan.
| | - Tzu-Ming Wang
- Department of Pediatrics, Cathay General Hospital, Taipei 10630, Taiwan.
| | - Chien-Yu Lai
- Department of Pediatrics, Cathay General Hospital, Taipei 10630, Taiwan.
| | - Jiun-Wen Guo
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan.
| |
Collapse
|
2
|
Laureano AF, Vigato AA, Puzer L, de Araujo DR. Recombinant scFv-Fc Anti-kallikrein 7 Antibody-Loaded Thermosensitive Hydrogels Against Skin Desquamation Disorders. ACS APPLIED BIO MATERIALS 2024; 7:4486-4496. [PMID: 38886921 PMCID: PMC11253099 DOI: 10.1021/acsabm.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Human tissue kallikrein-related peptidase 7 (KLK7) is a serine protease implicated in the physiology of skin desquamation, and its uncontrolled activity can lead to chronic diseases such as psoriasis, atopic dermatitis, and Netherton syndrome. For this reason, kallikrein 7 has been identified as a potential therapeutic target. This work aimed to evaluate Pluronic (PL) hydrogels as topical carriers of four specific scFv-Fc antibodies to inhibit KLK7. The hydrogels comprised PL F127 (30% w/v) alone and a binary F127/P123 (28-2% w/v) system. Each formulation was loaded with 1 μg/mL of each antibody and characterized by physicochemical and pharmaceutical techniques, considering antibody-micelle interactions and hydrogel behavior as smart delivery systems. Results showed that the antibodies were successfully loaded into the PL-based systems, and the sol-gel transition temperature was shifted to high values after the P123 addition. The antibodies released from the gels preserved their rheological properties (G' > G'', 35- to 41-fold) and inhibitory activity against KLK7, even after 24 h. This work presented potential agents targeting KLK7 that may provide strategies for treating skin abnormalities.
Collapse
Affiliation(s)
- Ana Flávia
Santarine Laureano
- Department
of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital & Harvard Medical School, CNY149 13th Street, Charlestown, Boston, Massachusetts 02129, United States
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Al. da Universidade, s/n-Anchieta, São
Bernardo do Campo, SP 09606-045, Brazil
| | - Aryane Alves Vigato
- Department
of Biomedical Science (BMV), Faculty of Health and Society, Malmö University, Malmö 20506, Sweden
- Biofilms−Research
Center for Biointerfaces, Malmö University, Malmö 20506, Sweden
| | - Luciano Puzer
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Al. da Universidade, s/n-Anchieta, São
Bernardo do Campo, SP 09606-045, Brazil
| | - Daniele Ribeiro de Araujo
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Av. dos
Estados, 5001, Bloco A, Torre 3, Santo André, SP 09210-580, Brazil
- Departamento
de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, Vila Clementino, Sao Paulo, SP 04023-062, Brazil
| |
Collapse
|
3
|
Skorenski M, Ji S, Verhelst SHL. Covalent activity-based probes for imaging of serine proteases. Biochem Soc Trans 2024; 52:923-935. [PMID: 38629725 DOI: 10.1042/bst20231450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Serine proteases are one of the largest mechanistic classes of proteases. They regulate a plethora of biochemical pathways inside and outside the cell. Aberrant serine protease activity leads to a wide variety of human diseases. Reagents to visualize these activities can be used to gain insight into the biological roles of serine proteases. Moreover, they may find future use for the detection of serine proteases as biomarkers. In this review, we discuss small molecule tools to image serine protease activity. Specifically, we outline different covalent activity-based probes and their selectivity against various serine protease targets. We also describe their application in several imaging methods.
Collapse
Affiliation(s)
- Marcin Skorenski
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven - University of Leuven, Herestraat 49 Box 901b, 3000 Leuven, Belgium
| | - Shanping Ji
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven - University of Leuven, Herestraat 49 Box 901b, 3000 Leuven, Belgium
| | - Steven H L Verhelst
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven - University of Leuven, Herestraat 49 Box 901b, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Pampalakis G. Αnti-KLK5/KLK7 Antibody-based Strategies for the Treatment of Epidermal Diseases. Curr Pharm Des 2023; 29:2354-2357. [PMID: 37987118 DOI: 10.2174/0113816128258924231011103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/25/2023] [Indexed: 11/22/2023]
Affiliation(s)
- Georgios Pampalakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
5
|
Sotiropoulou G, Zingkou E, Pampalakis G. Novel specific activity-based probes validate KLK proteases as druggable targets. Cancer Biol Ther 2022; 23:401-403. [PMID: 35652924 PMCID: PMC9176256 DOI: 10.1080/15384047.2022.2074775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Georgios Pampalakis
- Department of Pharmacology-Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Sotiropoulou G, Zingkou E, Bisyris E, Pampalakis G. Activity-Based Probes for Proteases Pave the Way to Theranostic Applications. Pharmaceutics 2022; 14:pharmaceutics14050977. [PMID: 35631563 PMCID: PMC9145445 DOI: 10.3390/pharmaceutics14050977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Proteases are important enzymes in health and disease. Their activities are regulated at multiple levels. In fact, proteases are synthesized as inactive proenzymes (zymogens) that are activated by proteolytic removal of their pro-peptide sequence and can remain active or their activity can be attenuated by complex formation with specific endogenous inhibitors or by limited proteolysis or degradation. Consequently, quite often, only a fraction of the protease molecules is in the active/functional form, thus, the abundance of a protease is not always linearly proportional to the (patho)physiological function(s). Therefore, assays to determine the active forms of proteases are needed, not only in research but also in molecular diagnosis and therapy. Activity-based probes (ABPs) are chemical entities that bind covalently to the active enzyme/protease. ABPs carry a detection tag to enable localization and quantification of specific enzymatic/proteolytic activities with applications in molecular imaging and diagnosis. Moreover, ABPs act as suicide inhibitors of proteases, which can be exploited for delineation of the functional role(s) of a given protease in (patho) biological context and as potential therapeutics. In this sense, ABPs represent new theranostic agents. We outline recent developments pertaining to ABPs for proteases with potential therapeutic applications, with the aim to highlight their importance in theranostics.
Collapse
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rion-Patras, Greece; (E.Z.); (E.B.)
- Correspondence: (G.S.); (G.P.)
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rion-Patras, Greece; (E.Z.); (E.B.)
| | - Evangelos Bisyris
- Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rion-Patras, Greece; (E.Z.); (E.B.)
| | - Georgios Pampalakis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (G.S.); (G.P.)
| |
Collapse
|
7
|
Bisyris E, Zingkou E, Kordopati GG, Matsoukas M, Magriotis PA, Pampalakis G, Sotiropoulou G. Generation of a quenched phosphonate activity-based probe for labelling the active KLK7 protease. Org Biomol Chem 2021; 19:6834-6841. [PMID: 34308939 DOI: 10.1039/d1ob01273h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Kallikrein 7 (KLK7) is a chymotrypsin-like serine protease with established roles in skin diseases like the rare Netherton syndrome, an overdesquamating and inflammatory condition, but also common atopic dermatitis, and a potential drug target for these and possibly other diseases. Nevertheless, tools to determine the active KLK7 enzyme are not available. Here, a mixed alkyl aryl phosphonate quenched activity-based probe that detects the active KLK7 was developed and evaluated in vitro. This KLK7-qABP can potentially be used to monitor KLK7 activity in vivo.
Collapse
Affiliation(s)
- Evangelos Bisyris
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, 265 04, Greece.
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, 265 04, Greece.
| | - Golfo G Kordopati
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, 265 04, Greece.
| | - Minos Matsoukas
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, 265 04, Greece.
| | - Plato A Magriotis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, 265 04, Greece.
| | - Georgios Pampalakis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 541 24, Greece.
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, 265 04, Greece.
| |
Collapse
|